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Abstract

Frankencoin is a decentralized, collateralized stablecoin with a modular architecture.
Core contributions are a novel auction-based liquidation mechanism and a mostly
interaction-free governance protocol. These two in combination make the Franken-
coin independent of external oracles and allow for a high degree of flexibility with
regard to the assets used as collateral. Additional equity capital to secure the system
is supplied by offering a governance token through the pricing mechanism presented
in chapter 3, effectively making the Frankencoin system a fully decentralized Con-
tinuous Capital Corporation. The long-term fundamental value that mirrors that of
the reference currency is obtained via collateralization and trust in the stakeholders
to align the return of holding Frankencoins with that of holding Swiss francs. Market
forces, rather than an oracle-based conversion mechanism, are hoped to maintain
the short-term peg. Finally, we assess the system’s risks through the lens of a bank
regulator, using historical data. The richly commented and audited Frankencoin
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20 2.1. Introduction

source code is provided as an appendix to complete the specification. The name
“Frankencoin" hints at the contemplated reference currency, the Swiss franc, as well
as the system’s self-governing nature.

2.1 Introduction

We start from the use-case of a Swiss franc Lombard loan, collateralized with tokens
such as crypto-currencies or tokenized securities. The borrower deposits collateral
into the system and thereby gains the possibility to mint a token, the “Frankencoin”
ZCHF, that is pegged to the Swiss franc. If the value of the borrower’s collateral
falls below a certain threshold, the loan can be liquidated and the borrower incurs a
haircut. If the value of the collateral falls below the loan value before the liquidation
ends, the loss eats into the system’s capital reserve. Implementing this system in a
fully decentralized way on the blockchain leads us to our main contributions:

– A modular approach that allows anyone to propose new minting mechanisms
and new collateral assets under a novel governance mechanism

– An innovative auction mechanism to enable oracle-free collateralized loans

– Capital requirements inspired by traditional banking rules

In comparison to other decentralized stablecoins, the Frankencoin stands out
with its simplicity and versatility, which is achieved by having a basic but extensible
setup that relies on the overarching economic incentives of the system participants
instead of strictly enforcing a narrow peg with technical means.

2.1.1 Existing Systems

This section describes existing stablecoins and how they solve the challenge of having
a stable value compared to a reference currency. In comparison to the Frankencoin,
most stablecoins are more directly concerned about steering the short-term peg to
the reference currency at small deviations, whereas the Frankencoin aims at creating
a credible fundamental value in the long term and relies more on market forces to
keep the exchange rate close to the fundamental value in the short term.
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Stabilization Methods

The largest two stablecoins, the Tether (USDT) and the USD Coin (USDC) are
based on the promise of an issuer to always sell and repurchase them at the price
of the reference currency, thereby enforcing a 1:1 peg for as long as the issuer is
solvent.1 A similar stablecoin tracking the Swiss franc is the CryptoFranc (XCHF).2

In the background, the issuer can apply any stabilization mechanism the law allows.
While capital requirements for banks are prohibitively restrictive when it comes
to the recognition of cryptocurrencies as collateral (Basel Committee on Banking
Supervision, 2022), creators of decentralized stablecoins can be much more creative
as their coins usually fall outside the scope of banking regulation, at least for now.
This allows them to explore new, innovative ways to stabilize the system. Generally,
a fully transparent and well-designed blockchain-based stablecoin is inherently more
stable than an opaque issuer-backed stablecoin that relies on traditional banking
infrastructure.

An example of a not so well-designed stablecoin is the TerraUSD (UST), belong-
ing to the class of algorithmic stablecoins. Before its spectacular collapse in May
2022, it was the third largest stablecoin in circulation (Liu, Makarov, and Schoar,
2023) (Briola et al., 2023). The TerraUSD was built on the Terra blockchain with
a built-in oracle at the protocol level. The blockchain validators had to provide
quotes for the supported currencies and were punished if they failed to do so or if
their quotes were too far from the quotes of the other validators. The system’s own
token was the Luna, and the stabilization mechanism was based on a mechanism to
print Luna tokens to buy TerraUSD in case it fell below the price of the reference
currency, and to do the opposite if the price of the TerraUSD was too high. The
stability of the TerraUSD rested on the assumption that the fundamental value of
the Luna token does not fall too fast when more have to be printed to stabilize
the system. Similarly to the currency of a country, this works well for as long as
the economy around the Luna token, namely everything that happens on the Luna
blockchain, is strong enough to support its value. However, it collapsed quite fast
once the market lost trust in its stability. Another similarly designed token, the
Iron Coin, faced the same fate. The Iron coin, which was supposed to track the
USD dollar, was intended to be stabilized by printing Titanium tokens as needed.
Generally, algorithmic stablecoins are considered risky as their value does not rest

1tether.to and circle.com/en/usdc
2bitcoinsuisse.com/cryptofranc
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on tangible collateral (Clements, 2021). Nonetheless, some authors argue that algo-
rithmic stablecoin can be rational Ponzi schemes if they can provide sound ways to
credibly postpone their collapse indefinitely (Fu et al., 2023).

Besides issuer-backed and algorithmic stablecoins, there is a third class of sta-
blecoins that is based on a blockchain-based collateral. Two of the most popular
instances are the DAI and the Liquity USD (LUSD) (Chen, Fogel, and John, 2022;
Lauko and Pardoe, 2021). Typically they let anyone deposit a collateral and then
mint a certain quantity of the stablecoin. If the value of the collateral falls below a
critical threshold, the deposit is liquidated and the proceeds are used to repay the
minted coins. This is the principle that we apply to the Frankencoin, with the major
difference being that the Frankencoin is much more adaptable to different collateral
types, as it introduces a liquidation mechanism that does not rely on the presence
of an oracle.

Problems with Oracles

An oracle is a service that records external observations on a blockchain, creating
a data feed that is accessible to the smart contracts that reside on this blockchain.
Typically, this data consists of prices observed in other places. When a decentral-
ized stablecoins relies on a price oracle, this introduces an external dependency and
potentially leads to centralization. For example, when analyzing the currently most
popular oracle in the Ethereum system, Chainlink, one finds that its administrators
could collude to manipulate prices and potentially exploit this capability to steal
billions from decentralized protocols that rely on Chainlink. While the price feeds
offered by Chainlink are the median of often more than a dozen independent sources,
configuring the feed only requires the signatures of four of its administrators, en-
abling them to arbitrarily manipulate prices if they wish to do so.3 But even if the
administration was more decentralized, one would still have to trust the independent
price sources to not collude. History shows that sometimes even the most reputable
institutions cannot resist doing some price manipulation when the incentive to do
so is big enough (Wheatley, 2012).

3For example, the Chainlink price feed for the ETH / USD price pair found
at data.chain.link/ethereum/mainnet/crypto-usd/eth-usd is based on smart contract
0x5f4ec3df9cbd43714fe2740f5e3616155c5b8419. When we first looked into this smart contract in
late 2021, only 3 out of 19 administrator signatures were required to configure the feed. After
our observation made its way to the prolific crypto influencer Chris Blec (twitter.com/ChrisBlec),
who prominently voiced his concerns on Twitter and Coindesk TV, Chainlink adjusted it to 4 out
of 9 signatures. This is slightly better, but still a risk.



Chapter 2. Frankencoin 23

A more direct type of price feed is based on trades from decentralized exchanges
that reside on the same blockchain. Here, an attacker would need to manipulate the
prices through actual trades, which can be costly for popular assets traded on liquid
markets, but less for illiquid assets. A further challenge is that a price feed chosen
today might not be reliable any more in the future. Building a robust system based
on the price-feed of a decentralized exchange would require a fallback mechanism in
case liquidity on that exchange falls below an acceptable level, with that fallback in
practice often boiling down to having a group of administrators that can configure
the price source. That is why we came up with a new approach of price discovery
that is tailored towards the situation at hand.

Governance

The launch of the Ethereum system made it possible to run programs on a
blockchain. These programs are usually referred to as smart contracts and one of its
first use cases was the creation of decentralized autonomous organizations (DAOs),
that are governed by unstoppable code instead of human-driven processes (Jentzsch,
2016; Beck, Müller-Bloch, and King, 2018). However, the hacking of the first and at
the time largest DAO (simply named The DAO) led to a shift away from complex
governance mechanisms towards protocols that are as simple as possible and ideally
even governance-free (Morrison, Mazey, and Wingreen, 2020; Ellinger et al., 2020).

In practice, this ideal is hard to attain and it is often desirable to have some
minimally invasive form of governance to enable the protocol to evolve and adapt in
a guided manner. Typically, this is done by the issuance of a transferable governance
token that conveys voting rights that can be exercised in a democratic process. This
section summarizes the governance process of two successful protocols, Uniswap and
Maker, setting a benchmark for Frankencoin’s governance.

Uniswap has a governance token called UNI that allows one to take part in
a governance process based on majority votes. There are 1 billion UNI tokens in
circulation, out of which about 200 million have registered themselves for voting by
specifying a delegate. Delegates who command at least 2.5 million votes can create
proposals. At the time of the proposal, a snapshot of the voting registry is taken
and a voting period of 7 days starts. The proposal passes if it has at least 40 million
supporting votes and if enjoys majority approval (Adams et al., 2021).

Out of the 41 proposals made so far, 28 have passed, 2 have failed, and 11 have
been withdrawn again by the proposer. The ones that failed did so because they did
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not reach the 40 million quorum. No one seems to have ever attempted to make a
malicious proposal. A potential attacker would have to invest more than 100 million
to acquire 40 million UNI tokens, hope that the other tokens holders do not notice
the proposal or do not take it seriously enough to bother with voting, and then make
it pass in the last minute.

Maker employs a custom voting process they call ’top hat voting’. In this pro-
cess, new proposals are automatically approved as soon as they received more votes
than the previously most popular proposal. Furthermore, the votes of a participant
move as they vote for a different proposal than they previously voted for, making it
possible for the approval threshold to decline over time (Christensen et al., 2021).

Typically, it takes about 80000 to 90000 votes for a proposal to pass, which is
about 9% of the MKR in circulation. That would also mark the amount of tokens
needed to launch a successful attack. Potentially, a successful attacker might be able
to get control over the system with an investment of roughly 100 million dollars at
current market prices, allowing the attacker to mint arbitrary amounts of the DAI
stablecoin if the attack is not detected early enough averted by a concerted effort of
the major token holders.

Both the Uniswap and the Maker governance seem fit for their purpose. How-
ever, both require active participation for passing proposals and de facto control is
exerted by only a handful of large token holders (Fritsch, Müller, and Wattenhofer,
2022). Also, the capacity of the system seems limited, as every proposal needs the
attention of the major token holders and the potential for parallelization is limited.

2.1.2 Structure of the Chapter

This chapter is structured as follows. In section 2.2, the reader is introduced to the
first cornerstone of the contribution, namely a method for oracle-free collateralized
minting based on auctions. In Section 2.3, we introduce a reserve pool to address
the residual risk of the system not being able to liquidate collateral at a price high
enough to repay an open position. This pool is capitalized by the minters as well
as voluntary contributors seeking a return on their Frankencoin holdings. At the
same time, the reserve pool shares serve as governance tokens for the veto-based
governance process described in section 2.4. Next, we turn our attention to how the
peg to the Swiss franc is maintained in section 2.5. This completes the overall design
of the Frankencoin, allowing us to outline the audited implementation in section 2.6
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and concluding with an extensive risk analysis in section 2.7, in which we apply the
typical capital requirements found in banking regulation to the system.

2.2 Oracle-free Collateralized Minting

This section specifies and analyzes the proposed oracle-free collateralized minting
process from a game-theoretic perspective. There are two relevant games to be ana-
lyzed. The first is the initialization game between the minter and the system when
proposing to mint new Frankencoins against a collateral. The second is the liquida-
tion game to ensure the liquidation of positions that cease to be well-collateralized.
The latter game has four participants: the minter, a challenger, bidders, and the
system, whereas the challenger and the bidders are the actors that take the relevant
decisions.

For simplicity, market prices are assumed to be constant for the duration of the
games. Without loss of generality, the reference currency of the system is assumed
to be the Swiss franc and the systems stablecoin is referred to as the Frankencoin or
ZCHF. The calibration of the loan-to-value ratio l is subject to a separate analysis.
It is not necessary to have a liquid market for the collateral asset. It suffices that
some independent potential challengers owning sufficient quantities exist, such that
the minter cannot corner the market. Finally, it is assumed that the market is
efficient and that all actors are rational.

2.2.1 Definitions

Table 2.1 defines the four actors that play a role in the two games, the minter, the
challenger, the bidder and the system. These actors have to choose strategies given
the decision variables listed in table 2.2 and the exogenous parameters defined in
table 2.3.



26 2.2. Oracle-free Collateralized Minting

Letter Name Description

M minter Deposits a collateral of CM and proposes a trigger price pT .
C challenger Challenges the minter offering CC units of the collateral.
B bidder Bids ZB Frankencoins for CC units of the collateral asset.
S system Vetoes new positions. Absorbs liquidation profits and losses.

Table 2.2: Actors. The four relevant actors in the two discussed games.

Letter Name Description

CM ∈ R>0 minter collateral Amount of the collateral provided by the
minter.

pT ∈ R>0 trigger price Price level below which the position is
liquidated.

CC ∈ (0, CM ] challenger collateral Collateral asset quantity offered by the
challenger.

pB ∈ R>0 bid The price the bidder is offering.
DS ∈ noop, veto governance The system’s approval decision.

Table 2.4: Strategies. The decision variables in the two discussed games.

Letter Name Description

l ∈ [0, 1] loan-to-value The usable fraction of the collateral value.
p ≥ 0 price The market price of the collateral in Frankencoin.
k ∈ [0, 1− l) reward Fraction of the bid to reward successful challenges.
v > 0 value The utility value the minter derives from a success-

ful minting.

Table 2.6: Parameters. The relevant parameters and their meaning.

2.2.2 Initialization Game

The initialization game is about initiating a new collateralized Frankencoin position.

Specification

Two actors, a minter M and the system S take part in this sequential game with
two rounds as depicted in Figure 2.1. In the first round, the minter chooses a
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M

S

pT ≤ p pT > p−kp
l

noop veto

(v, 0) ((lpT − p)CM > 0 , (p− kp− lpT )CM < 0)

(0, 0)

S
veto

(0, 0)
noop

S
veto

(0, 0)

noop

(
(lpT − p)CM < 0 , (p− kp− lpT )CM ≥ 0

)
Figure 2.1: Initialization game. Extensive form graph of the initialization game
between the minter (M) and the system (S), with the preferred choices in bold. The
first element in the round brackets is the minter’s payoff and the second element
that of the system. A rational minter M goes for the leftmost path, choosing a
liquidation trigger pT below the market price, allowing them to successfully mint
some Frankencoins and derive utility v from the obtained liquidity. In the other two
cases, the minter is either liquidated in the subsequent liquidation game and suffers
a loss, or the position is so undercollateralized that it is immediately vetoed by the
system to avert a loss.

strategy (CM , pT ) ∈ R2
>0. The variable CM is the amount of the collateral that the

minter deposits, and the variable pT is the price point at which the liquidation is
triggered. The trigger price also determines how many Frankencoins the minter can
mint and withdraw, namely up to ZM = lpTCM . In the second round, the system
chooses a strategy DS ∈ {noop, veto}, whereas noop is a common abbreviation for
’no operation’ and represents the choice of doing nothing. The other possibility is
to veto the proposal.

It is assumed that the minter has a desire to borrow some Frankencoins while
retaining ownership of the provided collateral. This is represented by a utility of
value v in case of a successful initialization of a well-collateralized position. Since
the minted Frankencoins and the resulting debt are of equal magnitude, there is no
benefit for the minter besides v. A position is considered well-collateralized as long
as pT ≤ p. On the two depicted paths where the position is not well-collateralized,
the payoffs are determined by the subsequent liquidation game. The two relevant
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ranges to consider are the one where the collateral suffices to cover the loss, such
that the system benefits from the liquidation, i.e. pT ≤ p−kp

l
, and the one where the

position is so under-collateralized that the liquidation leads to a loss for the system.

Analysis

Theorem 1 (Valid Initialization). Assuming the liquidation game is successful at
liquidating undercollateralized positions and yields the payoffs from table 2.5 (The-
orem 2), the initialization game will never end with a position being opened that is
not well-collateralized, whereas well-collateralized is defined as pT ≤ p.

Proof. Theorem 1 can be shown by analyzing the initialization game as depicted in
Figure 2.1.

Case 1 (left path, pT ≤ p). The collateralization is sufficient to prevent a liquida-
tion. The system S is indifferent between veto or noop, as there is no loss or gain
for either decision. The resulting position, if any, is well-collateralized.

Case 2 (middle path, p < pT ≤ p−kp
l

). In this case, the position is not well-
collateralized. The system has to choose between vetoing it and doing nothing. Doing
nothing leads to the successful initialization of the position and, assuming that Theo-
rem 2 holds, a liquidation with a positive payoff for the system and a negative payoff
for the minter. The minter would get away with up to ZM = lpTCM Frankencoins,
but would also suffer a loss of pCM > ZM . This leads to a negative payoff and the
conclusion that no rational minter will ever choose pT in the range p < pT ≤ p−kp

l
.

Case 3 (right path, pT > p−kp
l

). In this case, the position is so under-collateralized
that a liquidation would yield a negative outcome for the system after auctioning off
the collateral and paying the challenger reward. With a veto, the system S can avert
that loss, resulting in no position being opened and a payoff of 0 for the minter.

To conclude, no rational minter will ever propose an position that is not well-
collateralized.

Extensions

In practice, casting a veto comes at a cost for the system as someone needs to
invest time into reviewing the proposed position, estimating the market price of the
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collateral, and potentially casting a veto. To counter this, the actual system imposes
an application fee f on the minter when applying for a new position. Furthermore,
it is possible for the system to impose an interest i < v − f without deterring the
minter from making a proposal. For simplicity, we do not formalize these additional
factors.

2.2.3 Liquidation Game

The purpose of the liquidation game is to liquidate undercollateralized positions
after the market price has fallen below the trigger price, i.e. p < pT . The payoffs
are designed such that the challengers have an incentive to start the challenge only
when the position actually is undercollateralized.

The liquidation game consists of two stages: a decision to challenge the col-
lateralization of a position and the subsequent competitive decisions to bid on the
challenge. Anyone can start a challenge and thereby become the challenger. Also,
anyone can place a bid. In the base scenario, it is assumed that the minter, chal-
lenger, bidder and system are independent. In subsequent sections, we show that
the game still works as intended if identities overlap, for example when the bidder
and the minter are the same person.

Specification

Two actors, the challenger and a group of competitive bidders take part in a se-
quential game as depicted in Figure 2.2. The minter is not allowed to repay the
outstanding balance and reclaim the collateral for as long as a challenge is pending
and is therefore not an actor in this game. Neither is the system.

The liquidation game starts with the challenger’s decision to start a challenge
with quantity CC ≤ CM of the collateral. Then, it is the bidder’s turn to bid for
that quantity of the collateral and to choose a bid ZB = pBCC , implying the bidding
price pB. In practice, the bidding process is conducted as a Dutch auction. The
price starts at pT for a while and then starts to linearly decline towards 0 until a
bidder finds the offer attractive enough. The price point at which this happens is
denoted pB. Given a competitive process and an efficient market, the sale will either
happen at pT or the market price p, i.e. pB = min(p, pT ).
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Challenges that end with pB < pT are considered successful. They imply that the
position is not well-collateralized. Challenges that end with pB = pT are considered
averted. In the successful case, it is CC of the minter’s collateral that the bidder is
bidding for. In the averted case, the bidder will get the challenger’s collateral. The
switch in the bidding target is the key element of the Frankencoin auction.

In the averted case, the bidder ends up buying CC units of the collateral asset
from the challenger for pBCC = pTCC , with the other actors being unaffected. In
the successful case, the bidder ends up buying the same quantity of the collateral
from the minter, with the proceeds going to the system, the minter’s associated debt
lpTCC being erased, and the challenger being rewarded with kpBCC . These payoffs
are shown in Table 2.4. and illustrated in Figure 2.3 for the case of the successful
challenge.

C chooses CC

(0, 0, 0, 0)

CC = 0

B chooses ZB = pBCC

CC > 0

pB < pT pB = pT

Challenge averted
(see payoff table)

Challenge successful
(see payoff table)

Figure 2.2: Liquidation game. Extensive form graph of the liquidation game.
It only makes sense to start a challenge if the highest bid can be expected to imply
a violation of the loan-to-value threshold, i.e. if the market price of the collateral is
below the trigger price.

Base Scenario

In the base scenario, it is assumed that the minter, challenger, bidder and system
are distinct persons.

Theorem 2 (Successful Liquidation). Given rational actors, a challenge is started
if and only if the market price has fallen below the trigger price, i.e. p < pT , and
the challenge will end successfully.
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Actor Challenge successful Challenge averted

B bidder p− pB p− pB

C challenger kpB −p+ pB

M minter lpT − p 0

S system pB − kpB − lpT 0

Table 2.8: Payoffs. The payoff for each actor in the liquidation game in relative
terms. To get the absolute payoff, all values need to be multiplied by the size of the
challenge CC .

Proof. The payoff of the bidder does not depend on whether the challenge is success-
ful or averted, making it perfectly predictable. Being rational, the bidders will never
bid higher than the market value, i.e., pB ≤ p. Considering that the Dutch auction
starts at price pT , the highest possible bid is pB = pT . Under perfect competition
in an efficient market, the highest bid therefore is:

ZB = pBCC = min(p, pT )CC (2.1)

Predicting the behavior of the bidder, the challenger immediately start a chal-
lenge once the market price has fallen below the trigger price, i.e. p < pT , allowing
them to earn the challenger reward kpBCC . In contrast, they will not start a chal-
lenge when p ≥ pT as the payoff would be pB − p = pT − p ≤ 0.

Therefore, given the specified payoffs, rational challengers will start a challenge
as soon as p < pT (but not earlier) and that challenge will be successful.

Overlapping Identities Scenario

A key assumption of the base scenario was that all actors are independent. However,
in practice, the bidder and the minter might be the same person, or there might be
side-payments between them to tilt the incentives. This section shows how theorem
2 is affected and how it can be preserved when the bidder does not act on its own.
The other three conceivable combinations (i.e. challenger and system as the same
person) are less problematic and not further discussed.
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challenger reward
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0

pT

-lp CT C

lpT
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Figure 2.3: Bid allocation after a successful challenge. How the proceeds
from the winning bid (red) are allocated to the minter (green), the challenger (or-
ange), and the system (blue), as a function of the bidding price pB. The four lines
sum up to zero. It is pivotal for the system to ensure that challenges happen be-
fore the price has fallen too low in order to avoid losses. In the extreme case of
the collateral having become worthless, the system has no choice but to forgive the
outstanding amount lpTCC .

Proposition 1 (The challenger as bidder). Theorem 2 still holds when allowing the
challenger to be the bidder.

This proposition is shown by distinguishing the case of the successful from the
case of the averted challenge.

In case of a successful challenge, p < pT holds by definition. If that was not
the case, other bidders would bid pB = pT and avert the challenge. When the
highest bidder and the challenger are the same person, the cumulative payoff for the
successful case is:

p− pB + kpB > 0

In case of an averted challenge, the cumulative payoff of the bidder and the
challenger is:
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p− pB − p+ pB = 0

This implies that a challenger can cancel a challenge at any time without incur-
ring any costs, simply by bidding pB = pT . It also implies that the challenger has
no incentive to artificially avert an otherwise successful challenge.

Furthermore, within the successful challenge case, the challenger has no incen-
tive to make a bid above the market price (pC > pB = p) as the payoff without
interference is larger than the payoff with interference (kpB > p− pC + kpB).

Therefore, a rational challenger will not bid any different than any other bidder
in case of p < pT , and would not start a challenge otherwise, preserving theorem 2.

Proposition 2 (The minter as bidder). Theorem 2 is violated when allowing the
minter to be the bidder in an isolated game, but still holds when allowing the chal-
lenger to repeat the game under the same market price p.

The minter might want to avert a looming liquidation by placing bids above
the market price, i.e. pB = pT > p. Bidding above the market price to avert a
challenge yields a negative payoff of p − pB < 0. However, taking this loss might
still be preferable over taking the liquidation loss of lpT − p. So in such a case, a
rational minter would bid above the market price, leading to the challenge being
averted despite p < pT , violating theorem 2!

To address this problem, one needs to expand the scope from a one-shot game
to a repeated game. When the minter averts the challenge by bidding above the
market price with pB = pT > p, the challenger makes a profit of pB − p > 0. If the
challenger is given the opportunity to restock the auctioned asset at market price p

and then repeat the game before the minter gets a chance to close the open position,
theorem 2 still holds. In that case, the challenger can threaten to infinitely repeat
the game, causing an infinite loss to the minter. Under this threat, a rational minter
reverts to the original bidding strategy under which the ideal bid is the same as for
the other bidders.

Proposition 3 (The system as bidder). Theorem 2 is violated when allowing the
system to be the bidder in an isolated game, but still holds when allowing the chal-
lenger to repeat the game under the same market price p.
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This is a somewhat theoretic scenario as the system is governed by commonly
agreed rules and cannot act arbitrarily. Nonetheless, it is worth analyzing for com-
pleteness. To analyze this scenario, we distinguish three cases, one in which the
challenge is already averted without the system’s intervention, one in which the sys-
tem overbids to avert a challenge, and one in which the system places a bid such
that p < pB < pT .

In case of the market price being high enough that other bidders already can
be predicted to avert the challenge, the incentive of the system acting as bidder are
identical to that of the other bidders, as the payoff for the system in that case is
zero.

For the other two cases, the cumulative payoff of the system for a successful
challenge needs to be considered. It is:

p− pB + pB − kpB − lpT = p− kpB − lpT

This payoff is identical to the payoff without intervention with p = pB. In the
case of a positive payoff, the system has no incentive to deviate from the standard
behavior. In the case of a negative payoff, the system could be tempted to bid
artificially high like the minter in proposition 2 to avert the challenge and to postpone
the looming loss. However, this is not sustainable in a repeated game and even in a
one-shot game one could argue that the system did not improve its situation as it
still sits on the same undercollateralized loan.

Therefore, the outcome remains the same and the validity of Theorem 2 is
preserved.

2.2.4 Example

As an example, let us say the minter opened a position with 10 ABC tokens at a
trigger price of pT = 100 as collateral and that l = 0.8 and k = 0.02. The minter
withdraws 800 ZCHF. Then, a challenge is started with 4 ABC tokens, and the
highest bid ends up being 360 ZCHF, so the challenge is successful since 360 < 400.
The bidder gets 4 ABC tokens from the minter. The minter’s debt is reduced by
320 ZCHF to 480 ZCHF backed by 6 ABC tokens. From the 360 ZCHF bid, 320
ZCHF are burned, k ∗ 360 = 7.2 ZCHF are given to the challenger as a reward, and
the remaining 32.8 ZCHF are assigned to the reserve as profits for the system.
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2.2.5 Minter Reserve

The Frankencoin system has three lines of defense that guard against an undercol-
lateralization of the system. The first line of defense is the overcollateralization of
the individual positions as defined by the parameter l. The second line of defense
is the equity capital of the system as described in the subsequent chapter. And the
third line of defense is the use of other positions in case one position fails through
a mechanism denoted as the minter reserve. This allows the system to burden the
minters with additional debt to bring the books back into balance and should be
seen as a measure of last resort once everything else has failed.

To feed the minter reserve, the minting mechanism is adjusted and two additional
global variables introduced, the actual reserve R and the target reserve R̃. Given a
position with CM and pT , the minter will still be allowed to mint and withdraw up to
ZM = lpTCM Frankencoins, but at the same time an additional ZR,t = (1− l)pTCM

Frankencoins are minted and added to the reserve on behalf of the minter. When
the minter repays the position, the reserve contribution is fully returned again under
normal circumstances, but might be lower in stress scenarios.

When adding ZR,t to the reserve at time t, the actual reserve and the target
reserve are updated as follows:

Rt = Rt−1 + ZR,t

R̃t = R̃t−1 + ZR,t

Including the reserve, the de facto total debt of the minter at time t is ZT =

ZM + ZR,t. In order to close position at time s, the minter must repay:

Z ′
M = ZT − Rs

R̃s

ZR,t

As long as Rs = R̃s, this is identical to the scenario without the minter reserve.
However, they might have to repay more in case the system suffered from a loss that
could not be covered by equity capital. In case of a loss Lt at time t that cannot be
covered by the first two lines of defense, the missing Frankencoins are taken out of
the minter reserve, implicitly increasing the amount of Frankencoins every minter
needs to return in order to get their collateral back:
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Rt = Rt−1 − Lt

After a loss has happened, the reserve will be below its target, i.e. R < R̃ and
minters will have to return Z ′

M > ZM to close their positions. As long as the system
reserve is below its target, all capital flows that normally go into the equity capital
of the system are redirected to the minter reserve to replenish it.

Effectively, this also leads to a temporarily higher loan-to-value ratio l̃ when
reasoning about the stability of a position:

l̃ = (l − 1)
R

R̃
+ 1 ≥ l

This new loan-to-value ratio l̃ only applies when repaying an outstanding
amount. When minting new Frankencoins, the old l is still applicable.

So in a distress scenario, a minter might for example mint 80 ZCHF but would
need to repay 81 ZCHF to close the position again with l = 0.8 and R

R̃
= 0.95. So

as long as the minter reserve is not replenished, closing a position will come with an
additional implied fee.

This change has no qualitative impact on the initialization and the liquidation
game, although it temporarily makes the initialization more costly until the minter
reserve is replenished.

2.3 Equity and Pool Shares

The Frankencoin offers different functions that are fulfilled by commercial banks in
the off-chain economy. It offers a fungible means of payment and it allows its users
to borrow money against a collateral. Furthermore, it can suffer from losses and
generate profits. These losses and profits accumulate in a pool that belongs to the
holders of Frankencoin Pool Shares (FPS).

Frankencoin Pool Shares are freely transferable tokens that resemble the shares
in a company. Formally, they do not fulfill the requirements to be a security. But
functionally, they let the holders participate in the system’s economic success (or
failure). Like traditional shares, they are also the basis for participation in the
governance process.



Chapter 2. Frankencoin 37

2.3.1 Issuance and Redemption

Issuance and redemption of pool shares are governed by the principles of the Con-
tinuous Capital Corporation presented in chapter 3. At any time, new investors
can contribute additional capital and get Frankencoin Pool Shares in return. And
existing shareholders can redeem their shares at the same price as determined by
the pricing rule of the continuous capital corporation. To derive this pricing rule,
one needs to specify its production function first.

There is extensive literature on the production function of the banking sector
(Benston, Hanweck, and Humphrey, 1982; Gilbert, 1984; Clark, 1984). However,
it is unclear how to apply the existing insights to the Frankencoin system. While
the early research often assumes Cobb-Douglas production, which would make it
easy to derive the pricing function of the continuous capital corporation, their in-
sights are often not directly applicable. For example, Bell and Murphy (1968) use a
Cobb-Douglas production function, but their measure for the bank’s output is the
number of accounts, whereas we are looking at how monetary income depends on
the employed capital. Therefore, we resort to just assume Cobb-Douglas production
for simplicity and then show that the chosen parameters lead to a sensible result
given the circumstances.

For the purpose of deriving the pricing rule, we focus on capital as the only
input, arriving at a production function of the form:

f(K) = AKα

The exponent α represents the capital share (as opposed to the labor share that is
skipped here) in macroeconomic models. It denotes how much of the system’s value
stems from its capital and typically floats between 20% and 40% for the economy as
a whole (Ilo, 2015). The factor A represents the level of productivity or technology,
but cancels itself out in the subsequent calculations.

With the economic consequences presented in section 2.3.3 in mind, we have
chosen a value of α = 1/3 for the Frankencoin system, leading us to a market cap
or valuation of:

V (K) =
f(K)

f ′(K)
= 3K
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Given the number of shares in circulation s, the price of one FPS is given by
p(K, s) = 3K

s
.

To calculate the number of shares an investor gets by contributing ∆K to the
reserve, we calculate the number of shares st+1 after the investment given the number
of shares st before the investment using the capital-dependent function 3.9 from
Chapter 3 for the number of shares θ(K) as follows:

st+1 =
θ(K +∆K)

θ(K)
st =

f(K +∆K)

f(K0)

f(K0)

f(K)
st =

(K +∆K

K

) 1
3 st

The advantage of looking at the relative increase of the number of shares s is
that this equation is still valid in the presence of other factors that influence K

between transactions, namely incoming profits and outgoing losses. In contrast, the
static equation for θ(K) derived in chapter 3 is only generally valid when profits
and losses are immediately attributed to the shareholders, like it is done in general
equilibrium models, but not in reality.

2.3.2 Frontrunning and Remedy

One of the risks of the continuous capital corporation is that it opens the door for
frontrunning at the cost of the shareholders. This risk is particularly accentuated
for systems running on a public ledger where imminent flows of capital can be
anticipated and acted on before they are processed by the system. For example,
if a profitable liquidation of a large position is imminent, it would be profitable to
buy some pool shares immediately before the liquidation and redeem them again
immediately afterwards in a so-called sandwich attack, allowing the attacker to
make a nice return in a short time at the expense of the other shareholders. The
Frankencoin system guards against this risk by enforcing a minimal holding period
and a transaction fee.

To quantify the profits that can be extracted through such a sandwich trade,
consider how the number of shares changes during the attack, with the attacker first
investing i, then the system receiving a profit π, and finally the attacker divesting
d again:

st+2 =
(K + π + i− d

K + π + i

) 1
3 st+1 =

(K + π + i− d

K + π + i

) 1
3
(K + i

K

) 1
3 st
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Here, st denotes the number of shares in circulation before the trade, st+1 after
investment i, and st+2 after the trade. Assuming that the attacker wishes to do a
neutral attack and end up with the same number of shares as they started, st+2 = st

holds. With this assumption, the above equation can be solved for d in order to
quantify the proceeds from the divestment d(i) as a function of the investment i.

The attacker wishes to maximize their profits by choosing i:

max
i

d(i)− i = K + π − (K + i+ π)K

K + i

The larger the employed capital i, the larger the amount the attacker can extract,
with:

lim
i→∞

d(i)− i = π

With infinite Frankencoins, a frontrunner could potentially reap all the imminent
system profits for themselves in a sandwich attack. Such a sandwich attack would
consist of a transaction consisting of a large flash loan, buying as many shares as
possible, triggering the profitable event (i.e. the end of an auction), selling the shares
again, and finally repaying the flash loan. In a scenario in which the Frankencoin
system itself supports native flash loans, such loans could potentially be much larger
than the amount of ZCHF in circulation.

The Frankencoin system averts such attacks and discourages short-term specu-
lation in general by enforcing a minimal holding period of 90 days. However, this
measure on its own still leads to undesired arbitrage opportunities where a minority
of active traders can extract a profit at the expense of the passive investors. The
associated price dynamics are illustrated in figure 2.4.

Having small-scale arbitrageurs extract small profits from the system whenever
there is a small inflow or outflow of equity capital does not seem to add value to
the system. Therefore, we seek to prevent it by introducing a price spread of 0.6%,
which is equivalent to a 0.3% fee and in line with the standard fees of the Uniswap
system. A price spread is a common method to protect against losses when trading
with informed traders (Glosten and Milgrom, 1985).

Another way to guard against such attacks would be to smoothen incoming
profits and losses. This would make the attack more costly as the attacker would not
only need to deploy capital for an atomic instant, but would need to employ it over a
longer period of time. However, such a smoothing would cause the pricing function
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Figure 2.4: Stylized anticipated price change. In the absence of any trading,
the inflow of a profit leads to an immediate, proportionate adjustment of the price
at which pool shares can be obtained or redeemed (green line). In an active market,
traders anticipate this change and start buying before the change, and sell again after
the change (blue line), making a profit at the expense of the passive shareholders.
Introducing a price spread (dashed green line) prevents intertemporal arbitrage for
small price changes that happen at discrete steps.

to exhibit a lag. While the trading fee also leads to a lagged price discovery, the
mispricing caused by the fee is limited relative to the price (the 0.3%), whereas the
mispricing introduced by profit smoothing is only bound in time and can potentially
be much larger as changes accumulate.

2.3.3 Equilibrium Reserves

Assuming similar risk premia for debt in the Frankencoin system and pool shares,
the economic equilibrium is reached when about 1/3 of the effectively borrowed
Frankencoins are in the reserve pool.

To arrive at this result, we disregard the minters reserve and assume that the
interest paid on the effectively usable part D of all open Frankencoin debt positions
is rd, whereas D = O − R is defined as the total amount of Frankencoins minted
against a collateral O minus the minters reserve R. The choice of letter O is a
reference to the equivalent label minter repayment obligation from appendix 2.A.
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Further, let us denote the expected return of holding pool shares as re. Assuming an
equivalent risk premium, this leads to an arbitrage opportunity whenever rd ̸= re.
If rd < re, minters can borrow more and invest it into pool shares, thereby driving
up the price. If rd > re, investors have an incentive to sell pool shares instead of
increasing or renewing their debt positions.

We define rd to contain not only the nominal interests, but also fees, liquida-
tion proceeds, liquidation losses, and all other income streams directly or indirectly
attributable to the minters. Then, one can expect in equilibrium rdD = reV (K)

given the aforementioned arbitrage opportunities. The interest paid on the sum of
debt positions D corresponds to the return one can expect on investments in pool
shares with the market capitalization of the pool shares being V (K) = 3K as de-
fined in section 2.3.1. This implies K = 1

3
D in the static equilibrium. The effective

ratio can vary in times of changing interest rates as there is no incentive to cancel
already established positions early and no mechanism to adjust the interest rates of
established positions.

This, in turn, also implies that in equilibrium, 2
3
D ZCHF are used for other

purposes, for example as a transactional currency, and that the Frankencoin system
does not pay any interest to their holders. The underlying assumption is that there
is sufficient demand for a stablecoin as a transactional currency such that the system
as a whole can reap some seignorage gains and the early investors in Frankencoin
Pool Shares get a return on their capital that significantly exceeds re. Considerations
for what happens if there is a mismatch between the demand for Frankencoins as a
transactional currency and the demand for loans are made in section 2.5.

2.4 Governance

The Frankencoin system is designed for passive, decentralized governance. Under the
assumption of perfect information and rational participants, no governance action
will ever be necessary. This is achieved by having a passive system based on vetoes
that only require an intervention if things go wrong. Having a credible threat of
intervention can elicit correct behavior even if the intervention actually never takes
place.

Most decentralized autonomous organizations build on a vote-based governance
system with some form of majority votes as discussed in 2.1.1. In contrast, the
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Frankencoin system is based on vetoes. Its speed and the reduced amount of required
attention make veto-based governance more agile, faster, and more light-weight in
comparison to a full-scale majority vote. However, a veto-based system comes with
the disadvantage of a small minority being able to block the whole system. This is
averted by time-weighting the votes and the introduction of a ’kamikaze’ function
that allows an altruistic token holder to reduce the voting power of an attacker.

In the following, we specify the governance process, derive how a smart contract
can keep track of the voting weights of each shareholder, and show that the gover-
nance of the Frankencoin system yields the same outcome as a majority vote while
at the same time requiring fewer interactions than traditional voting schemes.

2.4.1 Specification

The governance system is subject to the following rules:

1. Anyone can make proposals. Making a proposal costs a fee of cp.

2. Proposals pass after tp days unless someone vetoes them.

3. Anyone with more than q = 2% of the total votes V has veto power, i.e. a
user with v votes can veto if v > qV holds.

4. The number of votes of a user is calculated by multiplying their Frankencoin
Pool Shares with the time they have held them.

5. Users can delegate their votes to other users, who in turn can delegate them
further. This allows minority shareholders to team up for a veto.

6. Users can persistently cancel each others votes. For example, Alice can sacrifice
100 votes in order to also reduce Bob’s number of votes by 100.

Having time-weighted votes shifts power towards users with a long-term interest
in the system. In particular, it guards against malicious actors that take flash loans
or use other short-term instruments to temporarily get a sufficiently large number
of shares in order to sabotage the system by vetoing good proposals.

Figure 2.6 shows the decision tree with the decision points for the supporters
and the opposition of a proposal. It is more deeply analyzed in section 2.4.3. There,
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we prove that the outcome of this veto-based process is equivalent to that of a
majority-based voting process, show how both approaches differ when taking costs
into account, and finally argue that the veto based approach is more efficient.

2.4.2 Vote Accumulation

To be able to determine whether a given token holder has more than 2% of all votes,
the system does not only need to keep track of each individual user’s vote, but also
of the total number of votes. Since computations and storage slots on the blockchain
are expensive, it is important to keep track of the votes as well as the total in an
efficient way. This section specifies how this is done in the Frankencoin system,
namely by storing anchor time stamps that are adjusted when tokens are moved.
This method requires one additional stored variable per user as well as two global
variables to keep track of the total. All operations are performed in constant time,
i.e. in O(1) according to the nomenclature of computer science.

The calculation of the votes of a given user is based on that user’s balance and
a time anchor. Denoting as the anchor of a user at discrete time step s and bs the
token balance at the same time, the number of votes at continuous time t can be
defined as:

v(t) = bs(t)(t− as(t))

Here, s(t) is a function that maps continuous time onto the number of balance
changes that have happened at this point in time. For every point in time t at which
a balance change happens, s increases by one. Further, let us denote ts as the time at
which balance change s happened and ts− the point in time immediately before that,
i.e. ts = ts− + ϵ for an arbitrary small ϵ > 0. Consequently, s(ts) = s = s(ts−) + 1.

as =

as−1, for bs ≤ bs−1

ts − v(ts−)
bs

otherwise

Proposition 4 (Anchor updates). The anchor update rule exhibits the required
properties, namely that votes are adjusted downwards proportionally when the user’s
balance declines and stay constant when the balance increases.

Proof. When the balance of a user declines in step s, the number of votes declines
proportionally:
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v(ts)

v(ts−)
=

bs(ts − as)

bs−1(ts− − as−1)
=

bs
bs−1

When a user receives tokens, the votes stay the same:

v(ts) = bs(ts − as) = bs(ts − ts +
v(ts−)

bs
) = v(ts−)

.

To keep track of the total votes V (t) in the system, two further variables are
needed. These are the total vote anchor As and the total vote anchor timestamp Ts.
Whenever a number of votes ls have been discarded in step s, these variables need
to be updated as follows:

As = V (ts−)− ls

Ts = t(s)

This ensures that the total number of votes can always be calculated as

V (t) = As(t) +Bs(t)(t− Ts(t))

with Bs denoting the total token supply at step s.

Continuously updating the vote counts on each transaction comes at a cost and
makes the transfer of pool share tokens about twice as expensive as a plain token.
Other governance tokens, for example those of Uniswap or the Maker protocol,
address this by only tracking the votes of those tokens that registered themselves
for voting. At the same time, they come with more heavy-weight voting mechanisms
that rely on snapshots of the token register.

2.4.3 Outcome Equivalence

This section shows that the Frankencoin governance system yields the same outcome
as a majority vote with rational participants. Let us denote Y the number of votes
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in favor of a proposal, and N the votes against (regardless of whether they have
been cast or not in an actual voting process).

Our benchmark is a standard majority vote that accepts the proposal when
Y > N as depicted in figure 2.5 with payoff pY > 0 for the supporters and payoff
pN < 0 for the opposition, and voting costs cv > 0 per vote.

Supporters choose y ≤ Y
Opposition chooses n ≤ N

y ≥ n

(pY − ycv − cp, pN − ncv) (−ycv − cp, −ncv)

y < n

Supporters

Proposal No proposal

(0, 0)

Figure 2.5: Vote game. With profits pY > 0 for those in favor, loss pN < 0 for
those against, voting costs cv ≥ 0 per vote, and proposal costs cp ≥ 0. Once the
supporters decided to make a proposal, the Y supporters and the opposition of size
N simultaneously choose how many votes y and n to cast.

An extensive form graph of the Frankencoin’s governance process is shown in
figure 2.6. In addition to the variables from the benchmark game, there is a value k

to denote the number of mutually cancelled votes in case the supporters choose to do
so in order to prevent the opposition from vetoing the proposal in future attempts.
Also, in this case cv stands for the costs of casting a veto and not the costs for
casting a vote.

Theorem 3 (Outcome Equivalence). Given rational actors and disregarding partic-
ipation costs, the supporters of a proposal can get it approved if and only if it would
also pass in a simple majority vote, i.e. in both the vote game and the veto game,
proposals will get through if and only if Y > N when cv = cp = 0 with veto quorum
q ∈ (0, 1].

Proof. For the base case of the majority vote without costs, supporters will choose
y = Y , and the opposition will choose n = N and the proposal will pass whenever
Y > N . What is left to prove is that the same applies to Frankencoin’s veto based
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Opposition

V eto with N
Y+N

≥ q = 2%

(pY − cp, pN)

(−cp, −cvq(N + Y ))

No veto

Supporters

No opCancel k votes at cost cvk

Repeat game with

Supporters

Proposal No proposal

(0,0)

Y ′ = Y − k
N ′ = N − k

Figure 2.6: Veto game. Offers the possibility to mutually reduce voting power
and then repeat it.

governance system. This is done by looking at the two cases with and without
majority support.

In the case with majority support, i.e. Y > N , and a proposal that was vetoed by
the opposition, the supporters can mutually cancel N votes and repeat the proposal.
This time, the opposition is left with N ′ = N−N = 0 votes and the supporters with
Y ′ = Y −N > 0 votes, such that N < q(N + Y ), which means that the opposition
has lost its veto power. The proposal passes.

In the case without majority support, i.e. Y ≤ N , and a proposal that was
vetoed by the opposition, the supporters can choose to mutually cancel up to Y votes.
When they repeat the proposal, the opposition can still veto it as N ′ = N − Y ≥ 0

and Y ′ = Y − Y = 0, such that N ′ ≥ q(N ′ + Y ′) still holds. The proposal does not
pass.

Therefore, for both the veto game and the vote game with rational players, the
proposal passes whenever Y > N .



Chapter 2. Frankencoin 47

2.4.4 Efficiency

This section takes the costs of the individual actions into account and argues without
strict proof that passing a good proposal in the vote game is more expensive than
in the veto game, making the veto game more efficient.

For the cost analysis, casting a vote or a veto is assumed to be associated with
costs cv > 0 per vote cast, so that casting y votes costs cvy and casting a veto costs
q(Y +N)cv. In line with established research, voter turnout y and n in simultaneous
voting games with fully informed participants are assumed to be significant, i.e. in
the same order of magnitude as Y or N , even if voting costs are high (Palfrey and
Rosenthal, 1983).

Similarly, the costs for the mutual cancellation of k votes is assumed to be cvk.
The costs for making a proposal is assumed to be cp > 0. Further, it is assumed
that proposals can be repeated arbitrarily often.

Comparing the resulting payoffs for a passing proposal in the vote game (pY −
cp − ycv, pN − ncv) with that of the veto game (pY − cp, pN), it is apparent that the
veto game is potentially much more efficient as one can save the efforts of voting.

For these efficiency gains to materialize, it has to be assumed that proposals
are mostly uncontroversial. This is the case if participants behave rationally and if
there is an effective system in place to ensure that they are well-informed about Y

and N . The two benchmark systems, Uniswap and Maker, run discussion forums to
create a consensus and perform off-chain consultative votes in order to vet proposals
before they are formally voted on in the expensive blockchain-based voting process.
Another method to achieve a high degree of information about Y and N is to
establish commonly accepted criteria for what makes a good proposal. Given such
processes, we expect the Frankencoin’s governance system to allow for a much larger
number of good proposals passing that come from a broader spectrum of participants
than the governance systems of the benchmark protocols described in section 2.1.1.

2.4.5 Attacks

In the context of decentralized autonomous organizations, it has to be assumed that
passing a proposal is irreversible and therefore could potentially cause irreparable
harm. This section formally shows that in the vote game, it is expensive to defend
against such malicious proposals, while in the veto game, it is expensive to approve
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a good proposal against a malicious opposition. We argue that the latter is to be
preferred.

Proposition 5 (Griefing with Votes). 4. In a system based on majority votes, it is
expensive for the majority to avert harmful proposals that come from a griefer, i.e.
a player that is willing to pay cp in order to cause disproportionate grief to others.
Formally, given the payoffs (−cp−cvn,−cvy) from figure 2.5 for the averted proposal,
there exists a strategy for the malicious supporters that forces the opposition to cast
n ≥ Y votes even though the malicious supporters asymptotically do not need to
vote at all, resulting in an asymmetric payoff close to (−cp,−cvY ), allowing the
supporters to cause disproportionate harm to the opposing majority.

Proof. Given that there is a malicious proposal that would cause a lot of harm,
i.e. −pN ≫ cvY , and that the supporters irrationally made despite knowing that
Y ≤ N , the opposing majority has no choice but to cast at least Y votes to rule out
the possibility that the proposal passes.

The decision variable of the supporters is y ≤ Y , denoting their actual number
of votes cast. Likewise, n ≤ N is the decision variable of the opposition and denotes
the number of votes cast against the proposal. Given that voting is costly, the
players prefer not to vote if it does not make a difference. Both decision variables
are chosen in a simultaneous game.

Under these circumstances, the supporters can cause disproportionate costs to
the majority by adopting the following mixed strategy with an arbitrarily small
ϵ > 0:

y =

Y with probability p = cvY
−pN

+ ϵ,

0 otherwise

The only rational answer for the opposition is to choose n = Y , the smallest
number of votes that guarantees that the proposal is declined. This leads to the
payoff of −cvY for the opposing majority, whereas the supporting minority only has
costs cp + pY cv, with

lim
pN→−∞,ϵ→0

cp + pY cv = cp

4Griefing is a term borrowed from online gaming and denotes the intentional causing of harm
for entertainment (Foo and Koivisto, 2004)
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for proposals that cause a lot of harm pN to the opposing majority. This results
in the asymptotic payoff of (−cp,−cvY ) for the supporters (the griefer) and the
opposing majority.

A majority-based system allows a malicious minority to launch griefing attacks in
which both parties take a loss, but the loss of the good majority is much bigger than
that of the attackers. Decentralized protocols usually discourage this type of griefing
by requiring a minimum number of votes to make a proposal, for example 2.5% in
the case of Uniswap. With this requirement, the attack requires substantial capital
that is at risk of suffering from a capital loss as the value of the governance token
can be expected to decline if the protocol is attacked. However, such a requirement
also introduces an element of centralization and restricts the ability of making a
proposal to only a handful of participants.

Note that voting on a public blockchain is not simultaneous as the votes become
publicly visible as they happen. However, the participants could try to cast their
votes immediately before the vote closes, making the game effectively simultaneous.
Both benchmark systems, Uniswap and Maker, are in principle susceptible to such
’last minute attacks’. As a remedy, they both chose to impose high barriers for
proposals to be made and to pass, making the governance process heavy.

Proposition 6 (Griefing with Vetos). In the veto-based system, it is expensive
to push through a majority-supported proposal against a malicious opposition with
power N < 0.5(N + Y ). More formally, an unknown minority only needs to spend
Ncv on casting vetoes whereas the cost for the supporting majority can grow infinitely
high, depending on N .

Proof. This proposition departs from the fully informed assumption. Otherwise, if
the supporters knew the identity of the attackers, they could simply cancel their
votes in advance and then pass the proposal at a total cost of cp + Ncv. However,
if the griefers falsely identify themselves as supporters, their identities must be
discovered incrementally during the veto game at high costs.

In each repetition of the game, the attackers cast a veto at cost cvq(Ni + Yi),
with Yi and Ni denoting the voting power of each group at round i. In each round,
the supporters cancel the votes of the newly revealed opposition members at cost
cvq(Ni + Yi) and repeat the proposal with costs cp. These costs are determined by
how often this attack can be repeated until the attackers do not have enough votes
to cast a veto any more.
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To formalize how many rounds that takes, consider the total number of votes
Ti = Yi +Ni shrinks by the same factor in each round i, such that Ti = (1− 2q)iT0.
We are looking for the point in time k at which the opposition can cast the veto for
the last time, which is at Nk = qTk, implying Yk = (1−q)Tk. Further using that both
parties must have lost the same number of votes in the end, i.e. Nk −N0 = Yk −Y0,
one can solve for k:

k(Y0, N0) = log1−q

Y0 −N0

(Y0 +N0)(1− 2q)

Notably:
lim

N0→Y0

k(Y0, N0) = ∞

So in case of a large unknown opposition that almost has a majority, the griefing
potential is unbounded as each of the potentially infinite repetitions comes with the
costs cp for renewing the proposal.

However, for small N0, the number of rounds needed is approximately N0

q
, which

implies that increasing the quorum q needed to cast a veto can reduce the vul-
nerability of the system. At the same time, having a low q makes it more risky
to launch controversial proposals with an unknown opposition, making the system
more conservative overall.

2.5 Fundamental Value

We now address the conditions under which the peg to the Swiss franc or any other
reference currency of choice should hold. The fundamental value of the Frankencoin
comes from a combination of three elements: first, it is necessary to have enough
collateral such that eventually, each ZCHF can be sold for at least one Swiss franc
to a minter who wants to get their collateral back. Second, the interest rate of
the system (rd as defined in section 2.3.3) should be managed such that given a
non-zero value of the stablecoin at some point in the future translates into a current
value that matches the reference currency. Third, one needs some assurance for the
minters to ensure that they cannot be made subject to a short-squeeze. These three
factors are addressed in the following three sections.
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2.5.1 Sufficient Backing

On the supply side of the Frankencoin, pool share holders should not allow any
mintings that create a risk of the value of the supplied collateral falling below the
nominal value of the Frankencoins in circulation. Assuming that each Frankencoin
is always backed with at least one Swiss franc worth of collateral, the Frankencoin is
fundamentally sound and one can assume that the minters are willing to pay at least
one Swiss franc per Frankencoin at the point in time when they want to get their
collateral back again. This is taken care of by the collateralized minting mechanism
discussed in section 2.2.

2.5.2 Comparable Yield

On the demand side, we approach the valuation of the Frankencoin from the per-
spective of a perpetual bond. A perpetual bond, or consol, is a bond with coupon
payments but no redemption date (Jorion et al., 2010). We price this perpetual along
the lines of (Jarrow and Turnbull, 2000), by discounting the interest payments on a
risky term structure. Let’s assume that interest payments happen at discrete time-
steps 0, ...,∞ and we have corresponding risky rates of the term-structure so that
the date-0 value of a promised Swiss franc at time t of a risky Franc promise is equal
to exp(−rtt). Let the constant coupon rate per Frankencoin be c. Now, the value
of the perpetual can be written as

v(0) =
∞∑
t=0

ce−rtt (2.2)

=
∞∑
t=0

ce−yt (2.3)

=
c

1− e−y
, (2.4)

where the second line replaces the time-specific discount rates by a yield, and the
last line is an application of geometric series. For the value to be at par, v(0) = 1,
we have to choose the coupon rate accordingly: c = 1 − e−y. Hence, if the interest
earned from contributing ZCHF are in line with discounting, the present value of
one ZCHF is equal to one Swiss franc.

The risky term-structure corresponds to the Swiss franc risk-free term-structure
plus a spread that compensates the investor for the risks. Whenever the risk-free
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term-structure, or the Swiss franc risk changes, c has to be adapted for the value
v(0) to be equal to one. In the Frankencoin system, the yield is implicitly set by the
pool share holders as they can veto minters that do not yield the right risk-adjusted
return for the system. In effect, the pool share holders act as an oracle, but for long
term interest rates instead of short term prices.

For this to work, minters must be required to pay an interest on their open
positions and positions should be limited in time. The shorter the average term of
the open positions is, the faster it is possible to push the yield that can be earned
from buying pool shares to the correct c. Generally, the system should seek to
increase the yield if there is too little demand for holding ZCHF and vice versa.

The comparison with the consol shows nicely that it is not necessary for a
stablecoin to be directly convertible to the reference currency in order to have the
same fundamental value. It suffices if the coin offers the same expected return.
Thereby, the problem is reduced to the ability to pay out an equivalent interest
under the assumption that there are market makers that recognize the long-term
value and engage in arbitrage trading in order to avert short-term deviations from
the peg.

2.5.3 Price Ceiling

While it is generally not possible to exchange Frankencoins directly into collateral
provided by the minters, the minters will have to buy back their minted Frankencoins
before they can get their collateral back. Here, the minters face the risk of a short
squeeze. By minting and selling Frankencoins, they are short ZCHF and might be
forced to pay more than one Swiss franc per Frankencoin to unlock their collateral.
So while those holding the stablecoin face the risk of it falling below the peg, minters
face the risk of the Frankencoin departing upwards from the peg.

In the proposed setup, we start with a very simple mechanism to avert the risk
of an overvaluation: we provide a bridge contract that allows holders of other Swiss
franc based stablecoins to convert them 1:1 into Frankencoins. As long as such
bridges exist, minters can be confident that they do not need to overpay for the
unlocking of their collateral. However, while relying on other stablecoins can help
in practice, it is not desirable to depend on external systems.

In the absence of stablecoin bridges, minters have to trust the system to always
allow the minting of new Frankencoins at competitive terms, such that a short-
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squeeze can be averted by simply minting additional Frankencoins and repaying the
open position with those. In effect, the system relies on good governance on both the
supply and demand side. On the supply side, the system must allow economically
sensible mint contracts and disallow irresponsible ones. On the demand side, the
system must ensure that the risk-adjusted interest rate tracks that of the Swiss
franc.

2.5.4 Long-term Incentives

Like many blockchain-based systems, the Frankencoin relies on the rationality of
its participants. There is no technical barrier for the participants to collectively
mismanage the Frankencoin, for example by letting a buggy minter contract pass.
It is in the economic interest of all involved parties to look after the system and
to make it work as expected. In particular, pool share holders have to be aware
that they would destroy the long-term value of the system by letting the stablecoin
deport too far from the peg. Since their reserve is at stake and they are the last who
could cash out in case of a crash due to a loss of trust, pool share holders have a
strong incentive to not let the price fall. At the same time, they also have a strong
incentive to ensure is a wide range of available mint contracts such that the risk of
a short-squeeze for minters is under control.

The reason why the system has such a strong interest in making sure the
Frankencoin tracks the value of the Swiss franc is that it enables them to earn
net interest income to the extent that the Frankencoin is used as a transactional
currency. For example, if the open market interest rate is 3% without any margin
between borrowers and lenders, the equity holders collectively earn around 9% on
the deployed capital in equilibrium as outlined in section 2.3.3. This is only possi-
ble if the Frankencoin is valuable enough as a transactional currency such that two
thirds of the holders do not care about missing out on potential interest. And the
transactional value is highest when the Frankencoin reliably tracks the value of the
reference currency.

2.6 Implementation

This section briefly touches on the software architecture of the Frankencoin as shown
in figure 2.7. In line with the insights presented in The Code is the Model, the source
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code should be considered the ultimate specification of the system, with the text and
mathematical parts of this chapter serving to document, analyze, and to generally
present the system in a commonly accessible way (Meisser, 2017).

Stablecoin Bridge

Collateralized Minting Hub

Position A

Position B

Position C

Anyone can propose new positions

Frankencoin Pool Shares

FeesVeto

Veto with 2%

Anyone can buy or redeem sharesAnyone can propose minting methods

Mint and burn

Figure 2.7: Architecture. There are two ERC-20 tokens, the Frankencoin
(ZCHF) and the Frankencoin Pool Shares (FPS), both with extra functionality to
allow new minters to be proposed subject to the veto-based governance process. The
diagram shows two types of minters, the stablecoin bridge and the minting hub. The
latter contains all functionality needed to initiate new collateralized minting posi-
tions.

The richly commented source code can be found in the end of the chapter starting
with appendix 2.D and ending with appendix 2.J. The Frankencoin smart contracts
are written in Solidity, a programming language developed for the Ethereum system
and also supported by other blockchains that are compatible with the Ethereum Vir-
tual Machine (EVM). The code listed in the appendices does not include standard
contracts such as ERC-20 and Ownable (Vogelsteller and Buterin, 2015). Further-
more, interface declarations are excluded to avoid redundancy. The full source code
can be found on github.com/Frankencoin-ZCHF/FrankenCoin.

The source code underwent three security audits over the course of the year, by
Scherer (2023), code4rena (2023), and Mackinga, Ulqinaku, et al. (2023). Besides
uncovering a number of technical vulnerabilities, the audits led us to change the
auction process from a traditional auction with competing bids to a Dutch auction.
In a Dutch auction, the price starts high and is continuously reduced until a buyer
appears. This type of auction is less susceptible to last-minute manipulations and
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has requires less information to be stored on chain.

2.7 Risk Analysis

We start by analyzing the risk of a capital loss section 2.7.1, leading us to a discussion
of meaningful capital requirements in section 2.7.2, and concluding with a proposal
for risk-based capital requirements inspired by Basel iii rules in section 2.7.3.

We find that with the chosen parameter h = 0.1, implying a loan-to-value ratio
of l = 1

1+h
≈ 0.91, using Bitcoin price data and an auction duration of 24 hours, the

system earns a significant net profit from the simulated liquidations and therefore
should not need additional risk compensation in the form of an increased interest
or otherwise higher fees. These results serve as a foundation to calibrate risk-based
capital requirements, where we find when applying Basel iii rules in a technology-
neutral way, equity ratios in the low single digit percentage point range would suffice
and note that the Frankencoin system has a generous risk buffer in its current design.

2.7.1 Risk from Collateralized Minting

The Frankencoin system is at risk of losing equity capital if a liquidation ends at
a price that does not suffice to cover the outstanding stablecoin balance and the
challenger reward. To evaluate that risk, we abandon the earlier assumption that
the price is constant during the auction. It is also noted that a rational challenger
will not immediately start a challenge when the market price p hits the liquidation
price pT , but at a price level p0 < pT slightly below the trigger price that depends
on the opportunity costs of having the collateral locked up and the probability of
the challenge succeeding. Based on these considerations, simulations are performed
to evaluate the risk of a loss depending on the price level at which the challenge was
started using historical Bitcoin price data.

In deviation from the previous section 2.2.3, the bidding process is assumed to be
a normal auction that runs for a fixed amount of time τ or ends immediately when
the highest bid reaches the liquidation price, i.e. pB = pT . Also, the challenger
reward is not based on the bid as before (i.e. kpBCC), but based on the minted
amount of Frankencoins (i.e. klpTCC). These deviations should not make a notable
difference in the simulation results, so it was decided against redoing them after the
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changes were introduced. As before, we note that the rational bids imply prices
matching (exogenous) market prices. We do not account for slippage incurred when
selling the collateral in exogenous markets so that we can use Bitcoin market prices
for the exercise at hand.

We define p0 as the exogenous market price at the time the challenge is started
and further define h = 1

l
− 1 and h′ ≤ h the level of overcollateralization (or

undercollateralization if h′ < 0) at the point in time when the challenge is initiated.
Consequently:

p0 = (1 + h′)lpT (2.5)

From Section 2.2.3 we have the condition for liquidation:

pB < (1 + h)lpT , (2.6)

to which we add the time dimension now. We consider the asset return r̃t over
the liquidation horizon τ . The challenge is averted earlier after t′ if during the
liquidation period a bid at the liquidation threshold is made. We can now express
the condition for liquidation as a function of the asset return, and the values h and
h′:

er̃t <
1 + h

1 + h′ ∀0 ≤ t ≤ τ. (2.7)

This is another way of expressing that the challenge is successful if at no point
in time t the price reaches pT .

Proof. By definition, given the return rτ we can express the price at the end of the
auction as pτ = exp(rτ )p0. Using pB = pτ in the case of the successful auction, one
can reformulate inequality 2.6 as follows:

pB = pτ = exp(rτ )p0 = exp(rτ )(1 + h′)lpT < (1 + h)lpT

which trivially leads to inequality 2.7 by dividing by (1 + h′)lpT .

To avoid the risk of the market price declining below an already made bid, a
rational bidder will wait with the placement of the bid until near the end of the
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auction. We can therefore assume that successful challenges lead to a liquidation at
price pτ even if the market price was temporarily higher during the auction.

The profit P̃ for the system is zero in case the challenge is averted, positive in
case of a liquidation at a price pτ ≥ (1 + k)lpT , negative if the price is below, and
zero if the challenge is averted and no liquidation takes place. We define a dummy
variable D that is exactly 1 in case a challenge is successful and 0 otherwise:

D = 1er̃t< 1+h
1+h′ ∀ 0≤t≤τ (2.8)

We can now express the profit P̃ per unit of the challenged amount as the following
random variable:

P̃ =
[
(1 + h′)er̃τ − (1 + k)

]
D (2.9)

Note that if the challenge starts at h′ ≥ h, the indicator function is always
D = 0 as the challenge is immediately ended again. We now determine the value P̃

to decide whether the system needs to be compensated by a minting fee.

To tackle the valuation of P̃ , we resort to the arbitrage free pricing principle,
which states that the value of a contingent claim is given by its discounted expected
value under the risk-neutral probability measure (Björk, 2009). We assume that
the risk-free rate used for discounting is equal to zero, which we consider adequate
especially since the period τ is very short. Let fτ (x) be the density function for
the return distribution over the period τ . Now, we can value P̃ conditional on the
starting level of liquidation h′ as follows

EQ
τ

[
P̃ |h′

]
= D

∫ log 1+h
1+h′

−∞
[(1 + h′)ex − (1 + k)] fτ (x)dx (2.10)

where the subscript τ emphasizes that the distribution depends on the liquida-
tion period.

We now discuss h′. If we knew the distribution of starting levels h′, we could
integrate out h′ to arrive at EQ

τ

[
P̃
]
. As established, challengers trade off the prob-

ability of collecting the reward given they issue a challenge versus the probability of
not being able to be front-run by other challengers. To investigate this trade off, we
assume that challengers issue a challenge when the collateral value reaches a level
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for which there is a given probability α that they receive the challenger reward. We
then investigate what minting fees each h′ (or equivalent, each α) implies.

Equation (2.10) uses the risk-neutral probability measure, often referred to as
Q, rather than the objective measure P. In practice, parameters for the measure
P are extracted directly from market data (e.g., sample volatilities and expected
returns), whereas parameters for the measure Q have to be extracted from option
data under the same model assumptions (e.g., option implied volatilities). With
risk averse investors, the Q-measure puts more weight on adverse market events, see
for example Breeden and Litzenberger (1978), leading to a higher risk-neutral price
of P̃ , compared to the value obtained when integrating Equation (2.10) under the
objective measure. We therefore proceed by calibrating a probability distribution
to observed market data and use this as a lower bound for the price of P̃ , or,
equivalently the minting fee should be at least equal to the negative value of P̃

under the measure P:

Θ
(i)
F ≥ −EP

τ

[
P̃
]
, (2.11)

where we add the negative sign because P̃ is a profit. For brevity, we omit the
superscript P in the sequel.

Challenge success probability

We are now ready to calibrate the parameters. To do so, we evaluate the probability
of liquidation for different challenger levels h′. We then locate reasonable challenger
levels and investigate the lower bound of the minting fee, Θ(i)

F , for the given level of
h′. In Appendix 2.C we describe the BTCCHF candle-data that we use to calibrate
the fees. We use 24h candle data (Open, Low, High, Close) and use the bootstrap
method introduced by Efron (1992) for estimation.

With candle data, we can readily determine whether for a given period, the
challenge started at the beginning of the candle would have been averted, D = 0,
or succeeded D = 1, by

D̂τ = 1{
PH
PO

< 1+h
1+h′

}, (2.12)
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where PO is the open price, PH the high price over period τ (without indexing the
candle for brevity), which follows directly from definition of D in Equation (2.8).
For the bootstrap, we define the following variables. Let N be the number of candle
observations, B the number of bootstrap replications, and D̂b = {D̂(b,1)

τ , ..., D̂
(b,N)
τ }

the bth bootstrap replication for a period-τ dummy that equals one if the challenge
was not averted. The bootstrap estimate for the probability of liquidation follows
directly from Equation (2.12):

Ê [D|h′] =
1

B

B−1∑
j=0

1

N

N∑
n=1

D̂(j,n)
τ . (2.13)

For comparison, we also evaluate the probability of liquidation conditional on
h′, assuming the challenge cannot be averted prior to time τ . For this assumption
we use both, a bootstrap evaluation (replacing PH/PO by PC/PO, with PC equal
to the close price, in Equation (2.12)) and a closed-form evaluation assuming the
returns are normally distributed:

Ê

[
1{r̃τ<log 1+h

1+h′ }

∣∣∣∣∣h′

]
= Φ

(
log(1 + h)− log(1 + h′)− µτ

στ

)
, (2.14)

where µτ and στ are location and scale parameters of the normal distribution,
and Φ (·) represents the standard normal cumulative distribution function. We use
the sample mean and standard deviation of the observed returns to estimate µτ and
στ respectively. Figure 2.8 shows the results. We see that allowing the challenge to
be averted early significantly reduces the probability that a challenge is successful
when it is issued at a price close to the liquidation threshold. At (1 + h′) about
2% below the liquidation threshold (1 + h), there is a fifty percent chance of the
challenge being successful.

The normal distribution overestimates the probability of liquidation for values
h′ above the liquidation threshold h, and underestimates the liquidation probability
for value of h′ < h compared to the bootstrap result. We use the variance resulting
from the bootstrap replications to estimate confidence intervals.
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Figure 2.8: Probability of liquidation given h′. This figure plots the prob-
ability of the challenge ending in a liquidation, when the challenge is started at a
level h′, with the liquidation level at h = 0.10 and a challenge duration of 24 hours
(solid black line). The probabilities are estimated via bootstrap (B = 5, 000 sam-
ples). Confidence intervals at the 1%-level remain below 0.05% around the point
estimates for each h′. For comparison, we hypothetically assume the challenges can-
not be averted before the end of the liquidation horizon (dashed and dotted curves).
We compare the bootstrap estimate (dashed line termed “empirical: not averted
early"), with the theoretical probability using normally distributed returns (with
sample mean and standard-deviation).
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Minting fee valuation

Finally, we use use Equation (2.9) to arrive at our bootstrap point estimate for the
value of the liquidation profit P .

Let r̂b = {r̂(b,1)τ , ..., r̂
(b,N)
τ } the bth bootstrap replication for a period-τ return,

now

Êτ

[
P̃ |h′

]
=

1

BN

B−1∑
j=0

N∑
n=1

D̂(j,n)
τ

[
(1 + h′)er̂

(j,n)
τ − (1 + k)

]
. (2.15)

We use B = 10, 000 bootstrap replications and calculate confidence intervals at
the 1%-level by applying the central limit theorem.5 The confidence interval result
in ranges in the 0.01%-area. Figure 2.9 shows the results. At low challenge levels,
the contributors have to burn ZCHF and there is a loss for them. At very high
challenge levels, often the challenge does not result in a liquidation and hence there
is no gain or loss for contributors. The system makes the most profit for challenges
that start at a level of about 1 + h′ = 107%.

In Figure 2.9 we see that the system does not lose on average if the challenge
starts above 1 + h′ = 102%. From Figure 2.8 we learn that starting the challenge
process at 1 + h′ = 102%, there is about a 90% probability that the challenge ends
in a liquidation, hence the challenge is expected to start above the 102% level. We
conclude that the minters do not need to be charged a risk premium to compensate
the system, unless risk-aversion would be very high.

2.7.2 Capital Requirements

Banking regulation prescribes three types of capital requirements for which we find
a meaningful analogue in the Frankencoin system, see for example the Basel III
banking regulation (Basel Committee on Banking Supervision, 2010) or the Dodd-
Frank Act (Acharya et al., 2010).

1. Risk-based capital requirements. These reserve requirements are based on the
sum of the reserve requirements of each individual position, whereas each po-
sition can have its own risk weight. The equivalent to that in the Frankencoin

5Having a vector of B bootstrap estimates x, we report the point estimate as the mean of x,
and the error at the a-level as z1−a

√
V [x]/B with z1−a the standard normal quantile.
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Figure 2.9: Expected system profit: We plot the expected profit (or loss) to
the system depending on the level h′ at which the challenge was started. Negative
values observed for approximately 1+h′ < 102% correspond to a loss for the system.
Challengers are likely to start the challenge at a level above h′ = 0.02 which corre-
sponds to a liquidation probability of over 90% as we see in Figure 2.8. Therefore
we conclude that with these parameters, we do not need to compensate the system
with a minting fee, unless there is a high risk-aversion.
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system is the requirement to contribute to the minters reserve, which might
differ for each position based on its riskiness.

2. Leverage limits restrict the overall amount of leverage in the balance sheet.
The balance sheet of Frankencoin is presented in Appendix 2.A. Leverage
limits are largely model-free and are therefore a safeguard against model risk
(e.g., model risk arising from the risk-models used to calibrate plugin-specific
capital requirements). Further, a leverage limit provides us with a global (i.e.
Frankencoin-system-wide) capital limit. In the Frankencoin system, the global
leverage limit is not directly enforced but economic incentives are designed
such that in equilibrium, the system should exhibit a robust leverage ratio.
On top of that, the collective minters reserve provides an additional layer of
protection that is comparable to the leverage limit.

3. Concentration limits. If the collateral of Frankencoin was mainly exposed to
the price of one asset, Frankencoin could more easily collapse following a large
price drop of that asset, compared to a more diversified collateral in the system.
The concentration limit aims at limiting the exposure to a single asset or a
group of related assets.

The main difference between traditional Lombard loans and the Frankencoin’s
collateralized minting positions is the treatment of the proceeds in case of a liqui-
dation. When a traditional Lombard loan is under-collateralized and the margin
call not answered, the lender only sells as much collateral as needed to restore the
loan-to-value ratio. Also, excess proceeds from the sale are returned to the owner
of the collateral. In contrast, the Frankencoin system liquidates the whole positions
as soon as the price reaches the trigger level and collects excess proceeds as profits.
The range between the loan-to-value level and the liquidation level can be consid-
ered as conditional capital contribution by the borrower and for capital requirements
considerations, this conditional capital has equity-like risk-absorbing properties. So
in effect, both the equity and the minters reserve add to the risk-absorbing capacity
of the system and should be taken into account when calculating the equivalent
to the leverage ratio for banks. With regards to the minters reserve, the system
resembles clearing houses, where each clearing member is required to contribute to
the guaranty fund based on the risk of their position.
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2.7.3 Risk-based Capital Requirements

Lombard loans are loans extended by banks to their customers, secured by the cus-
tomers’ securities that are held in bank custody. In the Lombard loan agreement,
bank and customer agree on the terms of the loan, including that additional assets
have to be provided in case the value of the collateral falls below a margin call level.
The bank has the right to sell the pledged securities, if the value falls below an agreed
level. In the Frankencoin system, there is no agreement beyond what is defined in
the smart contract, and hence there will not be any bankruptcy litigation. As a
consequence, there is a loss to the system that has to be covered with Frankencoin
reserves, as soon as the collateral drops below the loan amount. Not surprisingly,
this difference renders the Basel iii capital requirements for collateralized loans in-
adequate for the Frankencoin system. We therefore propose a more conservative
approach to capital reserves.

Each mint plugin defines the required reserves of ZCHF to be held against the
issued volume of ZCHF. We now assess how to specifically determine the risk-based
capital requirements for our illustrative setup. We do not require risk-based capital
reserves for the bridge plugins, so we focus entirely on the collateralized mint plugin,
collateralized in Bitcoin.

The assessment we perform now differs from the one we made to determine
the minimal fee in two main aspects, (1) we want to estimate a loss for the whole
collateralized mint plugin not only for an individual position, and (2) we are not
looking for an insurance valuation but for the capital required. The latter point
implies that we do not need any assumption on risk-neutral measures but we can
directly work with the observed data and use real world probabilities.

We start by applying the Basel iii rules for risk based capital.

From Basel Rules to Frankencoin Capital Requirements

The Basel Committee of Banking Supervision defines capital rules for collateralized
loans in the Basel iii regulatory framework. In view of the authors, the collateralized
mint plugin best meets the conditions to be considered a “repo-style transaction",
see 22.66 in Basel Committee on Banking Supervision (2019a), henceforth [CRE22].
In this framework, the bank first weights assets according to the risk to obtain the
risk-weighted assets (RWA). The bank is then required to hold a certain amount
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of capital, for example Common Equity Tier 1 must be at least 4.5% of RWA
and total capital must be at least 8% of RWA, for details see Basel Committee
on Banking Supervision (2019b). For collateralized loans, the rules are detailed in
[CRE22]. Banks have two options: “Banks may opt for either the simple approach,
which substitutes the risk weighting of the collateral for the risk weighting of the
counterparty for the collateralized portion of the exposure (generally subject to a
20% floor), or for the comprehensive approach, which allows a more precise offset of
collateral against exposures, by effectively reducing the exposure amount by the value
ascribed to the collateral", see 22.12 in [CRE22].

We focus on the comprehensive approach. First, the bank determines the expo-
sure amount after risk mitigation, E∗, which depends on the loan and the collateral.
Both are subject to a haircut, see 22.40 in [CRE22]:

E∗ = max[0, E(1 +He)− C(1−Hc −Hfx), (2.16)

where E∗ is the exposure amount after risk mitigation, E the current value
of the exposure (the loan), He haircut appropriate to the exposure, C the current
value of the collateral received, Hc the haircut appropriate to the collateral, Hfx the
haircut appropriate for currency mismatch between the collateral and exposure. The
exposure amount E∗ is to be multiplied by the risk weight of the counterparty to
obtain the risk weighted asset amount for the collateralized loan. Collateral haircuts
are either determined based on the type of collateral (e.g., 25% for ‘other equity‘
and a holding period of 10 days). The exposure is then multiplied by the risk weight
of the counterparty to obtain RWA. If the counterparty is not rated, a weight of 1.5
is applied. Figure 2.10 summarizes this approach. In Appendix 2.B we calculate
the Basel iii capital requirements using the comprehensive approach and using the
approach with own haircut estimates based on a 99%-VaR as per Basel iii. Table 2.6
shows the results: per Basel, the required capital reserve results to only about 1%
of outstanding loans, even when assuming a loan-to-value ratio of 1/(1+h) = 1/1.1

(which is always below current exposure assuming liquidations are effective).

To render the Frankencoin system resilient, the capital requirements must not
assume that litigation is possible, hence the whole exposure after risk mitigation
should be covered by capital reserves, as opposed to 12% per Basel iii. Second,
instead of applying the haircut on the current exposure value, (1 + h∗) as per Basel
iii, we apply the haircut on a conservative liquidation level (1+h′). This is illustrated
in Figure 2.10. To calculate the haircut, we estimate an empirical VaR at the 99%-
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Figure 2.10: Basel iii vs own approach. Basel iii subtracts a haircut from the
current collateralization value (1 + h∗) to obtain the exposure after risk mitigation
(shaded area). This quantity is multiplied by 1.5 for unrated counterparties. Total
capital is to be 8% of this. However, in the Frankencoin system there is no loan
agreement beyond the smart contract, and hence no litigation. We therefore pro-
pose a more strict approach, in which (1) the calculation of the haircut starts at a
conservative liquidation level (1 + h′), (2) the entire exposure after risk mitigation
is to be covered, as opposed to 1.5 · 8% = 12%.

level (a VaR level in line with Basel iii). We call this the Frankencoin Proposal in
Table 2.9. Second, we look at the Basel iii requirements for collateralized lending

Method Capital
Frankencoin Proposal (empirical VaR) 10%
RWA based, Basel iii Comprehensive 1.1%
RWA based, Basel iii Comprehensive (own haircuts) 1.3%

Table 2.9: Risk-based capital requirements. Results of capital reserves re-
quired using different approaches. For the setup at hand, we recommend that the
system should hold 10% of the outstanding loans as Frankencoin reserves.

Capital Estimation per Frankencoin Proposal

We construct empirical samples of loss data by applying the 24h log-returns to the
loss function given by Equation (2.9), which we repeat here:

P̃ =
[
(1 + h′)er̃τ − (1 + k)

]
D,

and we multiply the samples by -1 to have a positive number for a loss. Figure 2.11
gives an overview of the loss data for different challenger levels h′ via boxplots. We
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see that the median level of losses are benign, even for very low challenger levels of
h′ = −1% (meaning the liquidation is only started when the collateral has a value
of 99% of the loan notional, although the position would liquidate if the collateral
is at 110% of the loan notional). However, we also see that there are high losses
for all levels of h′ depicted, driven by two extreme returns in the data, where the
loss exceeds 20% of the loan notional. These losses are at a loan level and apply if
the loan challenge starts at a collateral coverage ratio of (1 + h′). On a plugin-wide
level, we would only lose the same percentage of the outstanding loan notional, if all
loans started at (1 + h′) simultaneously. Realistically, collateral coverage ratios are
more spread out and hence, the loan-level losses observed in Figure 2.11 are upper
bounds to the plugin-wide loss.

Figure 2.11: Empirical loss boxplot. This figure shows standard boxplots for
different challenger levels h′, given that a liquidation is triggered when the challenge
results in a collateral value of below 110% of the loan, and a challenger fee of k = 2%.
The vertical bar depicts the median, the boxes reach from the first quartile to the
third quartile, the whiskers extend to the max/min or at most 1.5 times the range
of the box, circles are plotted outside the span of the whiskers. For values h′ closer
to h = 0.10, the loss more often ends in a gain (negative number). At h = 0.10 the
challenge is averted. Losses stay on average benign but we also observe a few very
high losses that exceed 20% of the loan notional due to two very negative returns
(-49%, -31%).

Table 2.10 presents the 99-percentiles for daily losses (using the loss empirical
loss distribution seen in Figure 2.11, given the challenge start level h′. A conser-
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vative starting level is h′ = 2% as we have seen in the previous chapter. The
associated 10.73% loss at the 99%-level would assume that all loans have an equally
low collateralization of h′. To conclude, using our proposed approach that deviates
from the Basel iii rules towards the conservative side, we propose to set the capital
requirement to 10% of the outstanding loans.

h′ VaR99, %
-0.01 13.42
0.00 12.52
0.01 11.63
0.02 10.73
0.03 9.84
0.04 8.94
0.05 8.05
0.06 7.15
0.07 6.26
0.08 5.36
0.09 3.77
0.10 0.00

Table 2.10: Empirical VaR. This table shows the empirical VaR in percent of
the outstanding loan amount given the challenge starting level h′.

2.7.4 Resulting Leverage Ratio

We have observed in section 2.3.3 that in equilibrium, we can expect equity capital
to be about a third of the effectively borrowed capital. Furthermore, there is a
minters reserve that can be used to cover losses once the equity holders have been
wiped out. Assuming that the average minters reserve requirement is about 20%
of the borrowed capital, we arrive at an exceptionally conservative leverage ratio of
above 50%! However, taking into account that it is further possible to mint stable-
coins through stablecoin bridges as depicted in the balance sheet of appendix 2.A,
this leverage ratio can be lower to the extent that the bridges are used. To guard
against the imported risks from bridged stablecoins, the bridges have built-in limits
for the amount of Frankencoins that can be minted by them. Given this conser-
vative approach, the main risk for the Frankencoin system does not seem to stem
from the under-collateralization of individual positions, but from a potential lack of
competitiveness with other protocols that are willing to take more risks.
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2.8 Conclusion

Blockchain technology opens the possibility to create a new kind of monetary insti-
tutions that are governed in a decentralized way. Unlike bank loans that are issued
by a centralized entity, the presented Frankencoin can be minted by the borrowers
themselves, given that they provide suitable collateral, and the system has sufficient
capital in its reserve. In the presence of a central bank digital currency (CBDC),
see for example Chaum, Grothoff, and Moser (2021) or Brunnermeier and Niepelt
(2019), the presented Frankencoin could come with a bridge to that CBDC, in which
case the Frankencoin system could be seen as a fractional reserve multiplier just like
the established banks are for traditional central bank money. With that perspective,
it is no surprise that risk mitigation strategies from the current banking regulation
can serve as a starting point to risk mitigation in the Frankencoin system.



Appendix

2.A Frankencoin Balance Sheet

Figure 2.A.1 presents a stylized balance sheet view of the Frankencoin system. When
central banks print and issue currency, the outstanding amounts appear on the
liability side of the balance sheet. Similarly, the minted Frankencoins also appear
on the same side of the balance sheet. To see how they end up there, one first
needs to consider the balance sheet of an individual minter. When a minter mints
new Frankencoins, the freshly minted coins appear on the asset side of the minter’s
balance and at the same time, a repayment obligation is created on the liabilities
side. For the Frankencoin system, the opposite happens: the minter’s repayment
obligation appears on the asset side and the minted ZCHF among the liabilities.

One should note that the total balance sheet of the Frankencoin system is larger
than the total number of Frankencoins in circulation. That is because the same
Frankencoin can appear multiple times. If a minter sells his ZCHF and the buyer
uses them to buy Frankencoin Pool Shares, these Frankencoins appear a second time
on the balance sheet, this time as reserves with a corresponding increase in equity on
the passive side. Similarly, when for example minting 100 ZCHF against a collateral
with a loan-to-value ratio l = 0.8, it is not only the total supply and the minter
repayment obligations that increase by 100 ZCHF each, but also the reserve and the
minter reserve go up by 20 ZCHF each as 20% of the Frankencoins are immediately
redirected to the reserve after minting.

In case a minter cannot meet the repayment obligation and the subsequent
liquidation results in a shortfall, it is in first priority covered by the minter reserve
associated to the under-collateralized position, in second priority covered by equity,
and in third priority covered by the collective minters reserve. While the balance
sheet shows the Frankencoins minted against collateral assets, the provided collateral
itself does not appear on the balance sheet as it belongs to the minter.

70
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Minter
repayment
obligations

Minters reserve

Stablecoins locked
in bridges

Reserve

Equity

Total Frankencoin
(ZCHF) supply

Figure 2.A.1: Balance sheet. The balance sheet of the Frankencoin system.

2.B Basel Rules for Collateralized Lending

Haircuts are based on the type of exposure, see 22.4 in [CRE22]. For main equity
indices and gold, the haircut is 15%, for other equities 25% (10 day holding period).
Supervisors may also permit the banks to calculate their own haircuts.

Application of the comprehensive Approach

For repo-style transactions, supervisors may choose not to apply the haircuts spec-
ified in the comprehensive approach and may instead apply a haircut of zero, if the
counterparty is a core market participant’ as determined by the regulator. This
would result in zero RWA because the collateralized mint plugin requires over-
collateralization of all loans.

If the Frankencoin system is not exempt from the requirement that the counter-
party is to be a core market participant, we may choose the parameters as follows.

He = 0 The exposure is in CHF (cash), hence no valuation risk
Hc = 25%/

√
2 The ’other equity’ haircut seems to be the most appropriate to

reflect collateral in BTC. The 25% are for a 10-day holding pe-
riod, hence we scale by 1/

√
2 to have a 5-day haircut (which is

the minimum allowed – our actual holding period is 1 day)
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Hfx = 0% The asset is denominated in CHF, hence no additional currency
risk

The above numbers are based on a 10-day holding period. If holding periods
differ, the percentages are to be scaled by the square-root of time formula. However,
for repo-style transactions, a minimum holding period of five days applies. Now,
assuming a current loan to value ratio of 1/(1 + h∗), and an (artificial) holding
period of 5 days, we use Equation (2.16) and set E = 1, C = (1 + h∗):

E(h∗) = max[0, 1− (1 + h∗)(1−Hc)], (2.17)

= max[0, Hc(1 + h∗)− h∗], (2.18)

where the second line follows from algebra. For example, if h∗ > 0.21, the resulting
exposure is zero (using Hc = 25%/

√
2, we set the second term in the max-term

to zero and solve for h∗). Finally, the exposure E∗ needs to be weighted by the
counterparty risk weight. The counterparty in the Frankencoin system has generally
no rating and cannot be forced to make up for losses in the system, hence the worst
weight has to apply, which is w=150%, see Basel Committee on Banking Supervision
(2017). Assuming that the loans are just at the (previously defined) liquidation level
of h = 10%, we arrive at RWA of

E(h)w = 0.09445 · 1.5 = 14%

of the loan amount, of which 8% are required as total capital. Hence, the capital
requirement amounts to 1.1% of outstanding loans.

Comprehensive Approach: own Estimates for Haircuts

To calculate the haircuts, a 99th percentile, one-tailed confidence interval is to be
used (see 22.50 of [CRE22]), and the choice of historical observation period (sample
period) for calculating haircuts shall be a minimum of one year (see 22.53). The
minimum holding period is to be set to 5 days. The VaR results in

V aRq = (1− exp (rq)) + k, (2.19)
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where q is the quantile (99% per Basel iii), rq is the quantile return, and k the
challenger fee. Using the historical data detailed in Appendix 2.C, the 5-day loss
at the 99% quantile (using 1-day overlapping returns to calculate historical VaR at
1%-level) amounts to 19.44%+k = 21.44% (this compares to a haircut of 25%/

√
2 ≈

17.68% used above). The resulting RWA, using Equation (2.18) and multiplying by
the risk weight, at h∗ = 10% is 20.38%, of which 8% are required as capital.6 Hence,
the capital requirement amounts to 1.6% of outstanding loans.

2.C Data

Figure 2.C.1: BTCCHF trade data. This figure plots the level data of the
BTCCHF time-series. We have 890 observations of daily candle data without gaps
from 2019-12-07 to 2022-05-14.

We gather 1-hour candle data from Kraken, consisting of a timestamp, open,
low, high, close, number of trades, and volume.7 From each open and close price
we calculate 24h log-returns. Our return data has the following summary statistics.
Table 2.9 tests the time-series of 24h log-returns for stationarity via Augmented
Dickey-Fuller test and rejects the null-hypothesis of non-stationarity.

Figure 2.C.2 present a quantile-quantile plot against the normal distribution and
a histogram. Figure 2.C.2 also analyses serial correlation of the 24h log-returns. The
Autocorrelation Function shows a significant negative correlation at lag one, which
however turns out to be driven from extreme returns, as we can see on plot (d).

6RWA = E(h∗)w = (VaR(1 + h∗)− h∗)1.5
7See support.kraken.com/hc/en-us/articles/360047124832-Downloadable-historical-OHLCVT-

Open-High-Low-Close-Volume-Trades-data.
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Figure 2.C.2: Return data from Kraken. Plot (a) shows a quantile-quantile
plot of the 24h log-return data against a normal distribution, (b) plots a histogram
of the 24h log-returns. From (a) we see that we have more extreme returns than
what a normal distribution would suggest. In the center of the distribution, the
returns move less than the normal distribution would imply. Plot (c) shows the
autocorrelation function and a confidence band at the 0.95-level. Chart (d) plots
the returns against the previous day return. The figure indicates that the significant
autocorrelation at level 1 must be driven by rare extreme returns.
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num. observations 890
min, max [-49.09%, 25.13%]
mean 0.18%
variance 0.0018
skewness -1.90
kurtosis 25.93

Table 2.C.1: Summary statistics for 24h log-return data.

ADF Statistic: -13.8
p-value: 0.000000
Critical Value for 1%: -3.4

vspace15pt

Table 2.C.2: Stationarity test. The ADF test suggests that the log-return data
is stationary.

2.D Frankencoin (ZCHF) Token

The Frankencoin contract is an ERC-20 token with ticker ZCHF. It allows anyone
to suggest new minter contracts that can mint Frankencoins under arbitrary rules.
New minting contracts can be vetoed by qualified pool share holders. It also keeps
the accounting for the minter’s reserves when Frankencoins are minted or burned.

1 pragma solidity ^0.8.0;
2
3 import "./ utils/ERC20PermitLight.sol";
4 import "./ Equity.sol";
5 import "./ interface/IReserve.sol";
6 import "./ interface/IFrankencoin.sol";
7
8 /**
9 * @title FrankenCoin

10 * The Frankencoin (ZCHF) is an ERC -20 token that is designed to track the value of the Swiss franc.
11 * It is not upgradable , but open to arbitrary minting plugins. These are automatically accepted if none of the
12 * qualified pool share holders casts a veto , leading to a flexible but conservative governance.
13 */
14 contract Frankencoin is ERC20PermitLight , IFrankencoin {
15 /**
16 * Minimal fee and application period when suggesting a new minter.
17 */
18 uint256 public constant MIN_FEE = 1000 * (10 ** 18);
19 uint256 public immutable MIN_APPLICATION_PERIOD; // for example 10 days
20
21 /**
22 * The contract that holds the reserve.
23 */
24 IReserve public immutable override reserve;
25
26 /**
27 * How much of the reserve belongs to the minters. Everything else belongs to the pool share holders.
28 * Stored with 6 additional digits of accuracy so no rounding is necessary when dealing with parts per
29 * million (ppm) in reserve calculations.
30 */
31 uint256 private minterReserveE6;
32
33 /**
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34 * Map of minters to approval time stamps. If the time stamp is in the past , the minter contract is allowed
35 * to mint Frankencoins.
36 */
37 mapping(address minter => uint256 validityStart) public minters;
38
39 /**
40 * List of positions that are allowed to mint and the minter that registered them.
41 */
42 mapping(address position => address registeringMinter) public positions;
43
44 event MinterApplied(address indexed minter , uint256 applicationPeriod , uint256 applicationFee , string message);
45 event MinterDenied(address indexed minter , string message);
46 event Loss(address indexed reportingMinter , uint256 amount , uint256 reserve);
47 event Profit(address indexed minter , uint256 amount , uint256 reserve);
48
49 error PeriodTooShort ();
50 error FeeTooLow ();
51 error AlreadyRegistered ();
52 error NotMinter ();
53 error TooLate ();
54
55 modifier minterOnly () {
56 if (! isMinter(msg.sender) && !isMinter(positions[msg.sender ])) revert NotMinter ();
57 _;
58 }
59
60 /**
61 * Initiates the Frankencoin with the provided minimum application period for new plugins
62 * in seconds , for example 10 days , i.e. 3600*24*10 = 864000
63 */
64 constructor(uint256 _minApplicationPeriod) ERC20 (18) {
65 MIN_APPLICATION_PERIOD = _minApplicationPeriod;
66 reserve = new Equity(this);
67 }
68
69 function name() external pure override returns (string memory) {
70 return "Frankencoin ";
71 }
72
73 function symbol () external pure override returns (string memory) {
74 return "ZCHF";
75 }
76
77 function initialize(address _minter , string calldata _message) external {
78 require(totalSupply () == 0 && reserve.totalSupply () == 0);
79 minters[_minter] = block.timestamp;
80 emit MinterApplied(_minter , 0, 0, _message);
81 }
82
83 /**
84 * Publicly accessible method to suggest a new way of minting Frankencoin.
85 * @dev The caller has to pay an application fee that is irrevocably lost even if the new minter is vetoed.
86 * The caller must assume that someone will veto the new minter unless there is broad consensus that the new minter
87 * adds value to the Frankencoin system. Complex proposals should have application periods and applications fees
88 * above the minimum. It is assumed that over time , informal ways to coordinate on new minters emerge. The message
89 * parameter might be useful for initiating further communication. Maybe it contains a link to a website describing
90 * the proposed minter.
91 *
92 * @param _minter An address that is given the permission to mint Frankencoins
93 * @param _applicationPeriod The time others have to veto the suggestion , at least MIN_APPLICATION_PERIOD
94 * @param _applicationFee The fee paid by the caller , at least MIN_FEE
95 * @param _message An optional human readable message to everyone watching this contract
96 */
97 function suggestMinter(
98 address _minter ,
99 uint256 _applicationPeriod ,

100 uint256 _applicationFee ,
101 string calldata _message
102 ) external override {
103 if (_applicationPeriod < MIN_APPLICATION_PERIOD) revert PeriodTooShort ();
104 if (_applicationFee < MIN_FEE) revert FeeTooLow ();
105 if (minters[_minter] != 0) revert AlreadyRegistered ();
106 _transfer(msg.sender , address(reserve), _applicationFee);
107 minters[_minter] = block.timestamp + _applicationPeriod;
108 emit MinterApplied(_minter , _applicationPeriod , _applicationFee , _message);
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109 }
110
111 /**
112 * Make the system more user friendly by skipping the allowance in many cases.
113 * @dev We trust minters and the positions they have created to mint and burn as they please , so
114 * giving them arbitrary allowances does not pose an additional risk.
115 */
116 function _allowance(address owner , address spender) internal view override returns (uint256) {
117 uint256 explicit = super._allowance(owner , spender);
118 if (explicit > 0) {
119 return explicit; // don ’t waste gas checking minter
120 } else if (isMinter(spender) || isMinter(getPositionParent(spender)) || spender == address(reserve)) {
121 return INFINITY;
122 } else {
123 return 0;
124 }
125 }
126
127 /**
128 * The reserve provided by the owners of collateralized positions.
129 * @dev The minter reserve can be used to cover losses after the equity holders have been wiped out.
130 */
131 function minterReserve () public view returns (uint256) {
132 return minterReserveE6 / 1000000;
133 }
134
135 /**
136 * Allows minters to register collateralized debt positions , thereby giving them the ability to mint Frankencoins.
137 * @dev It is assumed that the responsible minter that registers the position ensures that the position can be trusted.
138 */
139 function registerPosition(address _position) external override {
140 if (! isMinter(msg.sender)) revert NotMinter ();
141 positions[_position] = msg.sender;
142 }
143
144 /**
145 * The amount of equity of the Frankencoin system in ZCHF , owned by the holders of Frankencoin Pool Shares.
146 * @dev Note that the equity contract technically holds both the minter reserve as well as the equity , so the minter
147 * reserve must be subtracted. All fees and other kind of income is added to the Equity contract and essentially
148 * constitutes profits attributable to the pool share holders.
149 */
150 function equity () public view returns (uint256) {
151 uint256 balance = balanceOf(address(reserve));
152 uint256 minReserve = minterReserve ();
153 if (balance <= minReserve) {
154 return 0;
155 } else {
156 return balance - minReserve;
157 }
158 }
159
160 /**
161 * Qualified pool share holders can deny minters during the application period.
162 * @dev Calling this function is relatively cheap thanks to the deletion of a storage slot.
163 */
164 function denyMinter(address _minter , address [] calldata _helpers , string calldata _message) external override {
165 if (block.timestamp > minters[_minter ]) revert TooLate ();
166 reserve.checkQualified(msg.sender , _helpers);
167 delete minters[_minter ];
168 emit MinterDenied(_minter , _message);
169 }
170
171 /**
172 * Mints the provided amount of ZCHF to the target address , automatically forwarding
173 * the minting fee and the reserve to the right place.
174 */
175 function mintWithReserve(
176 address _target ,
177 uint256 _amount ,
178 uint32 _reservePPM ,
179 uint32 _feesPPM
180 ) external override minterOnly {
181 uint256 usableMint = (_amount * (1000 _000 - _feesPPM - _reservePPM)) / 1000 _000; // rounding down is fine
182 _mint(_target , usableMint);
183 _mint(address(reserve), _amount - usableMint); // rest goes to equity as reserves or as fees
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184 minterReserveE6 += _amount * _reservePPM;
185 }
186
187 function mint(address _target , uint256 _amount) external override minterOnly {
188 _mint(_target , _amount);
189 }
190
191 /**
192 * Anyone is allowed to burn their ZCHF.
193 */
194 function burn(uint256 _amount) external {
195 _burn(msg.sender , _amount);
196 }
197
198 /**
199 * Burn someone elses ZCHF.
200 */
201 function burnFrom(address _owner , uint256 _amount) external override minterOnly {
202 _burn(_owner , _amount);
203 }
204
205 /**
206 * Burn that amount without reclaiming the reserve , but freeing it up and thereby essentially donating it to the
207 * pool share holders. This can make sense in combination with ’notifyLoss ’, i.e. when it is the pool share
208 * holders that bear the risk and depending on the outcome they make a profit or a loss.
209 *
210 * Design rule: Minters calling this method are only allowed to so for tokens amounts they previously minted with
211 * the same _reservePPM amount.
212 *
213 * For example , if someone minted 50 ZCHF earlier with a 20% reserve requirement (200000 ppm), they got 40 ZCHF
214 * and paid 10 ZCHF into the reserve. Now they want to repay the debt by burning 50 ZCHF. When doing so using this
215 * method , 50 ZCHF get burned and on top of that , 10 ZCHF previously assigned to the minter ’s reserved are
216 * reassigned to the pool share holders.
217 */
218 function burnWithoutReserve(uint256 amount , uint32 reservePPM) public override minterOnly {
219 _burn(msg.sender , amount);
220 uint256 reserveReduction = amount * reservePPM;
221 if (reserveReduction > minterReserveE6) {
222 emit Profit(msg.sender , minterReserveE6 , 0);
223 minterReserveE6 = 0; // should never happen , but we want robust behavior in case it does
224 } else {
225 minterReserveE6 -= reserveReduction;
226 emit Profit(msg.sender , reserveReduction , minterReserveE6);
227 }
228 }
229
230 /**
231 * Burns the provided number of tokens plus whatever reserves are associated with that amount given the reserve
232 * requirement. The caller is only allowed to use this method for tokens also minted through the caller with the
233 * same _reservePPM amount.
234 *
235 * Example: the calling contract has previously minted 100 ZCHF with a reserve ratio of 20% (i.e. 200000 ppm).
236 * Now they have 41 ZCHF that they do not need so they decide to repay that amount. Assuming the reserves are
237 * only 90% covered , the call to burnWithReserve will burn the 41 plus 9 from the reserve , reducing the outstanding
238 * ’debt ’ of the caller by 50 ZCHF in total. This total is returned by the method so the caller knows how much less
239 * they owe.
240 */
241 function burnWithReserve(
242 uint256 _amountExcludingReserve ,
243 uint32 _reservePPM
244 ) external override minterOnly returns (uint256) {
245 uint256 freedAmount = calculateFreedAmount(_amountExcludingReserve , _reservePPM); // 50 in the example
246 minterReserveE6 -= freedAmount * _reservePPM; // reduce reserve requirements by original ratio
247 _transfer(address(reserve), msg.sender , freedAmount - _amountExcludingReserve); // collect assigned reserve
248 _burn(msg.sender , freedAmount); // burn the rest of the freed amount
249 return freedAmount;
250 }
251
252 /**
253 * Burns the target amount taking the tokens to be burned from the payer and the payer ’s reserve.
254 * Only use this method for tokens also minted by the caller with the same _reservePPM.
255 *
256 * Example: the calling contract has previously minted 100 ZCHF with a reserve ratio of 20% (i.e. 200000 ppm).
257 * To burn half of that again , the minter calls burnFrom with a target amount of 50 ZCHF. Assuming that reserves
258 * are only 90% covered , this call will deduct 41 ZCHF from the payer ’s balance and 9 from the reserve , while
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259 * reducing the minter reserve by 10.
260 */
261 function burnFromWithReserve(
262 address payer ,
263 uint256 targetTotalBurnAmount ,
264 uint32 reservePPM
265 ) external override minterOnly returns (uint256) {
266 uint256 assigned = calculateAssignedReserve(targetTotalBurnAmount , reservePPM);
267 _transfer(address(reserve), payer , assigned); // send reserve to owner
268 _burn(payer , targetTotalBurnAmount); // and burn the full amount from the owner ’s address
269 minterReserveE6 -= targetTotalBurnAmount * reservePPM; // reduce reserve requirements by original ratio
270 return assigned;
271 }
272
273 /**
274 * Calculates the reserve attributable to someone who minted the given amount with the given reserve requirement.
275 * Under normal circumstances , this is just the reserver requirement multiplied by the amount. However , after a
276 * severe loss of capital that burned into the minter ’s reserve , this can also be less than that.
277 */
278 function calculateAssignedReserve(uint256 mintedAmount , uint32 _reservePPM) public view returns (uint256) {
279 uint256 theoreticalReserve = (_reservePPM * mintedAmount) / 1000000;
280 uint256 currentReserve = balanceOf(address(reserve));
281 uint256 minterReserve_ = minterReserve ();
282 if (currentReserve < minterReserve_) {
283 // not enough reserves , owner has to take a loss
284 return (theoreticalReserve * currentReserve) / minterReserve_;
285 } else {
286 return theoreticalReserve;
287 }
288 }
289
290 /**
291 * Calculate the amount that is freed when returning amountExcludingReserve given a reserve ratio of reservePPM ,
292 * taking into account potential losses. Example values in the comments.
293 */
294 function calculateFreedAmount(
295 uint256 amountExcludingReserve /* 41 */,
296 uint32 reservePPM /* 20% */
297 ) public view returns (uint256) {
298 uint256 currentReserve = balanceOf(address(reserve)); // 18, 10% below what we should have
299 uint256 minterReserve_ = minterReserve (); // 20
300 uint256 adjustedReservePPM = currentReserve < minterReserve_
301 ? (reservePPM * currentReserve) / minterReserve_
302 : reservePPM; // 18%
303 return (1000000 * amountExcludingReserve) / (1000000 - adjustedReservePPM); // 41 / (1 -18%) = 50
304 }
305
306 /**
307 * Notify the Frankencoin that a minter lost economic access to some coins. This does not mean that the coins are
308 * literally lost. It just means that some ZCHF will likely never be repaid and that in order to bring the system
309 * back into balance , the lost amount of ZCHF must be removed from the reserve instead.
310 *
311 * For example , if a minter printed 1 million ZCHF for a mortgage and the mortgage turned out to be unsound with
312 * the house only yielding 800 ’000 in the subsequent auction , there is a loss of 200 ’000 that needs to be covered
313 * by the reserve.
314 */
315 function notifyLoss(uint256 _amount) external override minterOnly {
316 uint256 reserveLeft = balanceOf(address(reserve));
317 if (reserveLeft >= _amount) {
318 _transfer(address(reserve), msg.sender , _amount);
319 } else {
320 _transfer(address(reserve), msg.sender , reserveLeft);
321 _mint(msg.sender , _amount - reserveLeft);
322 }
323 emit Loss(msg.sender , _amount , reserveLeft);
324 }
325
326 /**
327 * Returns true if the address is an approved minter.
328 */
329 function isMinter(address _minter) public view override returns (bool) {
330 return minters[_minter] != 0 && block.timestamp >= minters[_minter ];
331 }
332
333 /**
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334 * Returns the address of the minter that created this position or null if the provided address is unknown.
335 */
336 function getPositionParent(address _position) public view override returns (address) {
337 return positions[_position ];
338 }
339 }

2.E Frankencoin Pool Share (FPS) Token

The Equity contract is an ERC-20 token with name Frankencoin Pool Shares ticker
FPS. It contains an automated market maker that governs the issuance and redemp-
tion of pool shares, keeps track of how long pool shares have been held on the same
address, and contains the governance logic.

1 pragma solidity ^0.8.0;
2
3 import "./ Frankencoin.sol";
4 import "./ utils/MathUtil.sol";
5 import "./ interface/IReserve.sol";
6 import "./ interface/IERC677Receiver.sol";
7
8 /**
9 * @title Equity

10 * If the Frankencoin system was a bank , this contract would represent the equity on its balance sheet.
11 * Like with a corporation , the owners of the equity capital are the shareholders , or in this case the holders
12 * of Frankencoin Pool Shares (FPS) tokens. Anyone can mint additional FPS tokens by adding Frankencoins to the
13 * reserve pool. Also , FPS tokens can be redeemed for Frankencoins again after a minimum holding period.
14 * Furthermore , the FPS shares come with some voting power. Anyone that held at least 3% of the holding -period -
15 * weighted reserve pool shares gains veto power and can veto new proposals.
16 */
17 contract Equity is ERC20PermitLight , MathUtil , IReserve {
18 /**
19 * The VALUATION_FACTOR determines the market cap of the reserve pool shares relative to the equity reserves.
20 * The following always holds: Market Cap = Valuation Factor * Equity Reserve = Price * Supply
21 *
22 * In the absence of profits and losses , the variables grow as follows when FPS tokens are minted:
23 *
24 * | Reserve | Market Cap | Price | Supply |
25 * | 1000 | 3000 | 3 | 1000 |
26 * | 1000000 | 3000000 | 300 | 10000 |
27 * | 1000000000 | 3000000000 | 30000 | 100000 |
28 * | 1000000000000 | 3000000000000 | 3000000 | 1000000 |
29 *
30 * I.e., the supply is proporational to the cubic root of the reserve and the price is proportional to the
31 * squared cubic root. When profits accumulate or losses materialize , the reserve , the market cap ,
32 * and the price are adjusted proportionally , with the supply staying constant. In the absence of an extreme
33 * inflation of the Swiss franc , it is unlikely that there will ever be more than ten million FPS.
34 */
35 uint32 public constant VALUATION_FACTOR = 3;
36
37 uint256 private constant MINIMUM_EQUITY = 1000 * ONE_DEC18;
38
39 /**
40 * The quorum in basis points. 100 is 1%.
41 */
42 uint32 private constant QUORUM = 200;
43
44 /**
45 * The number of digits to store the average holding time of share tokens.
46 */
47 uint8 private constant TIME_RESOLUTION_BITS = 20;
48
49 /**
50 * The minimum holding duration. You are not allowed to redeem your pool shares if you held them



Chapter 2. Frankencoin 81

51 * for less than the minimum holding duration at average. For example , if you have two pool shares on your
52 * address , one acquired 5 days ago and one acquired 105 days ago , you cannot redeem them as the average
53 * holding duration of your shares is only 55 days < 90 days.
54 */
55 uint256 public constant MIN_HOLDING_DURATION = 90 days << TIME_RESOLUTION_BITS; // Set to 5 for local testing
56
57 Frankencoin public immutable zchf;
58
59 /**
60 * @dev To track the total number of votes we need to know the number of votes at the anchor time and when the
61 * anchor time was. This is (hopefully) stored in one 256 bit slot , with the anchor time taking 64 Bits and
62 * the total vote count 192 Bits. Given the sub -second resolution of 20 Bits , the implicit assumption is
63 * that the timestamp can always be stored in 44 Bits (i.e. it does not exceed half a million years). Further ,
64 * given 18 decimals (about 60 Bits), this implies that the total supply cannot exceed
65 * 192 - 60 - 44 - 20 = 68 Bits
66 * Here , we are also save , as 68 Bits would imply more than a trillion outstanding shares. In fact ,
67 * a limit of about 2**36 shares (that ’s about 2**96 Bits when taking into account the decimals) is imposed
68 * when minting. This means that the maximum supply is billions shares , which is could only be reached in
69 * a scenario with hyper inflation , in which case the stablecoin is worthless anyway.
70 */
71 uint192 private totalVotesAtAnchor; // Total number of votes at the anchor time , see comment on the um
72 uint64 private totalVotesAnchorTime; // 44 Bit for the time stamp , 20 Bit sub -second time resolution
73
74 /**
75 * Keeping track on who delegated votes to whom.
76 * Note that delegation does not mean you cannot vote / veto any more , it just means that the delegate can
77 * benefit from your votes when invoking a veto. Circular delegations are valid , do not help when voting.
78 */
79 mapping(address owner => address delegate) public delegates;
80
81 /**
82 * A time stamp in the past such that: votes = balance * (time passed since anchor was set)
83 */
84 mapping(address owner => uint64 timestamp) private voteAnchor; // 44 bits for time stamp , 20 subsecond resolution
85
86 event Delegation(address indexed from , address indexed to); // indicates a delegation
87 event Trade(address who , int amount , uint totPrice , uint newprice); // amount pos or neg for mint or redemption
88
89 constructor(Frankencoin zchf_) ERC20 (18) {
90 zchf = zchf_;
91 }
92
93 function name() external pure override returns (string memory) {
94 return "Frankencoin Pool Share";
95 }
96
97 function symbol () external pure override returns (string memory) {
98 return "FPS";
99 }

100
101 /**
102 * Returns the price of one FPS in ZCHF with 18 decimals precision.
103 */
104 function price() public view returns (uint256) {
105 uint256 equity = zchf.equity ();
106 if (equity == 0 || totalSupply () == 0) {
107 return ONE_DEC18; // initial price is 1000 ZCHF for the first 1000 FPS
108 } else {
109 return (VALUATION_FACTOR * zchf.equity () * ONE_DEC18) / totalSupply ();
110 }
111 }
112
113 function _beforeTokenTransfer(address from , address to, uint256 amount) internal override {
114 super._beforeTokenTransfer(from , to, amount);
115 if (amount > 0) {
116 // No need to adjust the sender votes. When they send out 10% of their shares , they also lose 10% of
117 // their votes so everything falls nicely into place. Recipient votes should stay the same , but grow
118 // faster in the future , requiring an adjustment of the anchor.
119 uint256 roundingLoss = _adjustRecipientVoteAnchor(to, amount);
120 // The total also must be adjusted and kept accurate by taking into account the rounding error.
121 _adjustTotalVotes(from , amount , roundingLoss);
122 }
123 }
124
125 /**
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126 * Returns whether the given address is allowed to redeem FPS , which is the
127 * case after their average holding duration is larger than the required minimum.
128 */
129 function canRedeem(address owner) public view returns (bool) {
130 return _anchorTime () - voteAnchor[owner] >= MIN_HOLDING_DURATION;
131 }
132
133 /**
134 * Decrease the total votes anchor when tokens lose their voting power due to being moved
135 * @param from sender
136 * @param amount amount to be sent
137 */
138 function _adjustTotalVotes(address from , uint256 amount , uint256 roundingLoss) internal {
139 uint64 time = _anchorTime ();
140 uint256 lostVotes = from == address (0x0) ? 0 : (time - voteAnchor[from]) * amount;
141 totalVotesAtAnchor = uint192(totalVotes () - roundingLoss - lostVotes);
142 totalVotesAnchorTime = time;
143 }
144
145 /**
146 * the vote anchor of the recipient is moved forward such that the number of calculated
147 * votes does not change despite the higher balance.
148 * @param to receiver address
149 * @param amount amount to be received
150 * @return the number of votes lost due to rounding errors
151 */
152 function _adjustRecipientVoteAnchor(address to, uint256 amount) internal returns (uint256) {
153 if (to != address (0x0)) {
154 uint256 recipientVotes = votes(to); // for example 21 if 7 shares were held for 3 seconds
155 uint256 newbalance = balanceOf(to) + amount; // for example 11 if 4 shares are added
156 // new example anchor is only 21 / 11 = 1 second in the past
157 voteAnchor[to] = uint64(_anchorTime () - recipientVotes / newbalance);
158 return recipientVotes % newbalance; // we have lost 21 % 11 = 10 votes
159 } else {
160 // optimization for burn , vote anchor of null address does not matter
161 return 0;
162 }
163 }
164
165 /**
166 * Time stamp with some additional bits for higher resolution.
167 */
168 function _anchorTime () internal view returns (uint64) {
169 return uint64(block.timestamp << TIME_RESOLUTION_BITS);
170 }
171
172 /**
173 * The relative voting power of the address.
174 * @return A percentage with 1e18 being 100%
175 */
176 function relativeVotes(address holder) external view returns (uint256) {
177 return (ONE_DEC18 * votes(holder)) / totalVotes ();
178 }
179
180 /**
181 * The votes of the holder , excluding votes from delegates.
182 */
183 function votes(address holder) public view returns (uint256) {
184 return balanceOf(holder) * (_anchorTime () - voteAnchor[holder ]);
185 }
186
187 /**
188 * Total number of votes in the system.
189 */
190 function totalVotes () public view returns (uint256) {
191 return totalVotesAtAnchor + totalSupply () * (_anchorTime () - totalVotesAnchorTime);
192 }
193
194 /**
195 * The number of votes the sender commands when taking the support of the helpers into account.
196 * @param sender The address whose total voting power is of interest
197 * @param helpers An incrementally sorted list of helpers without duplicates and without the sender.
198 * The call fails if the list contains an address that does not delegate to sender.
199 * For indirect delegates , i.e. a -> b -> c, both a and b must be included for both to count.
200 * @return The total number of votes of sender at the current point in time.
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201 */
202 function votesDelegated(address sender , address [] calldata helpers) public view returns (uint256) {
203 uint256 _votes = votes(sender);
204 require(_checkDuplicatesAndSorted(helpers));
205 for (uint i = 0; i < helpers.length; i++) {
206 address current = helpers[i];
207 require(current != sender);
208 require(_canVoteFor(sender , current));
209 _votes += votes(current);
210 }
211 return _votes;
212 }
213
214 function _checkDuplicatesAndSorted(address [] calldata helpers) internal pure returns (bool ok) {
215 if (helpers.length <= 1) {
216 return true;
217 } else {
218 address prevAddress = helpers [0];
219 for (uint i = 1; i < helpers.length; i++) {
220 if (helpers[i] <= prevAddress) {
221 return false;
222 }
223 prevAddress = helpers[i];
224 }
225 return true;
226 }
227 }
228
229 /**
230 * Checks whether the sender address is qualified given a list of helpers that delegated their votes
231 * directly or indirectly to the sender. It is the responsiblity of the caller to figure out whether
232 * helpes are necessary and to identify them by scanning the blockchain for Delegation events.
233 */
234 function checkQualified(address sender , address [] calldata helpers) public view override {
235 uint256 _votes = votesDelegated(sender , helpers);
236 if (_votes * 10000 < QUORUM * totalVotes ()) revert NotQualified ();
237 }
238
239 error NotQualified ();
240
241 /**
242 * Increases the voting power of the delegate by your number of votes without taking away any voting power
243 * from the sender.
244 */
245 function delegateVoteTo(address delegate) external {
246 delegates[msg.sender] = delegate;
247 emit Delegation(msg.sender , delegate);
248 }
249
250 function _canVoteFor(address delegate , address owner) internal view returns (bool) {
251 if (owner == delegate) {
252 return true;
253 } else if (owner == address (0x0)) {
254 return false;
255 } else {
256 return _canVoteFor(delegate , delegates[owner]);
257 }
258 }
259
260 /**
261 * Since quorum is rather low , it is important to have a way to prevent malicious minority holders
262 * from blocking the whole system. This method provides a way for the good guys to team up and destroy
263 * the bad guy ’s votes (at the cost of also reducing their own votes). This mechanism potentially
264 * gives full control over the system to whoever has 51% of the votes.
265 *
266 * Since this is a rather aggressive measure , delegation is not supported. Every holder must call this
267 * method on their own.
268 * @param targets The target addresses to remove votes from
269 * @param votesToDestroy The maximum number of votes the caller is willing to sacrifice
270 */
271 function kamikaze(address [] calldata targets , uint256 votesToDestroy) external {
272 uint256 budget = _reduceVotes(msg.sender , votesToDestroy);
273 uint256 destroyedVotes = 0;
274 for (uint256 i = 0; i < targets.length && destroyedVotes < budget; i++) {
275 destroyedVotes += _reduceVotes(targets[i], budget - destroyedVotes);



84 2.E. Frankencoin Pool Share (FPS) Token

276 }
277 require(destroyedVotes > 0); // sanity check
278 totalVotesAtAnchor = uint192(totalVotes () - destroyedVotes - budget);
279 totalVotesAnchorTime = _anchorTime ();
280 }
281
282 function _reduceVotes(address target , uint256 amount) internal returns (uint256) {
283 uint256 votesBefore = votes(target);
284 if (amount >= votesBefore) {
285 amount = votesBefore;
286 voteAnchor[target] = _anchorTime ();
287 return votesBefore;
288 } else {
289 voteAnchor[target] = uint64(_anchorTime () - (votesBefore - amount) / balanceOf(target));
290 return votesBefore - votes(target);
291 }
292 }
293
294 /**
295 * Call this method to obtain newly minted pool shares in exchange for Frankencoins.
296 * No allowance required (i.e. it is hardcoded in the Frankencoin token contract).
297 * Make sure to invest at least 10e-12 * market cap to avoid rounding losses.
298 *
299 * @dev If equity is close to zero or negative , you need to send enough ZCHF to bring equity back to 1000 ZCHF.
300 *
301 * @param amount Frankencoins to invest
302 * @param expectedShares Minimum amount of expected shares for frontrunning protection
303 */
304 function invest(uint256 amount , uint256 expectedShares) external returns (uint256) {
305 zchf.transferFrom(msg.sender , address(this), amount);
306 uint256 equity = zchf.equity ();
307 require(equity >= MINIMUM_EQUITY , "insuf equity "); // ensures that the initial deposit is at least 1000 ZCHF
308
309 uint256 shares = _calculateShares(equity <= amount ? 0 : equity - amount , amount);
310 require(shares >= expectedShares);
311 _mint(msg.sender , shares);
312 emit Trade(msg.sender , int(shares), amount , price());
313
314 // limit the total supply to a reasonable amount to guard against overflows with price and vote calculations
315 // the 36 bits are 68 bits for magnitude and 60 bits for precision , as calculated in an above comment
316 require(totalSupply () <= type(uint96).max , "total supply exceeded ");
317 return shares;
318 }
319
320 /**
321 * Calculate shares received when investing Frankencoins
322 * @param investment ZCHF to be invested
323 * @return shares to be received in return
324 */
325 function calculateShares(uint256 investment) external view returns (uint256) {
326 return _calculateShares(zchf.equity (), investment);
327 }
328
329 function _calculateShares(uint256 capitalBefore , uint256 investment) internal view returns (uint256) {
330 uint256 totalShares = totalSupply ();
331 uint256 investmentExFees = (investment * 997) / 1000; // remove 0.3% fee
332 // Assign 1000 FPS for the initial deposit , calculate the amount otherwise
333 uint256 newTotalShares = capitalBefore < MINIMUM_EQUITY || totalShares == 0
334 ? totalShares + 1000 * ONE_DEC18
335 : _mulD18(totalShares , _cubicRoot(_divD18(capitalBefore + investmentExFees , capitalBefore)));
336 return newTotalShares - totalShares;
337 }
338
339 /**
340 * Redeem the given amount of shares owned by the sender and transfer the proceeds to the target.
341 * @return The amount of ZCHF transferred to the target
342 */
343 function redeem(address target , uint256 shares) external returns (uint256) {
344 return _redeemFrom(msg.sender , target , shares);
345 }
346
347 /**
348 * Like redeem (...), but with an extra parameter to protect against frontrunning.
349 * @param expectedProceeds The minimum acceptable redemption proceeds.
350 */



Chapter 2. Frankencoin 85

351 function redeemExpected(address target , uint256 shares , uint256 expectedProceeds) external returns (uint256) {
352 uint256 proceeds = _redeemFrom(msg.sender , target , shares);
353 require(proceeds >= expectedProceeds);
354 return proceeds;
355 }
356
357 /**
358 * Redeem FPS based on an allowance from the owner to the caller.
359 * See also redeemExpected (...).
360 */
361 function redeemFrom(
362 address owner ,
363 address target ,
364 uint256 shares ,
365 uint256 expectedProceeds
366 ) external returns (uint256) {
367 _useAllowance(owner , msg.sender , shares);
368 uint256 proceeds = _redeemFrom(owner , target , shares);
369 require(proceeds >= expectedProceeds);
370 return proceeds;
371 }
372
373 function _redeemFrom(address owner , address target , uint256 shares) internal returns (uint256) {
374 require(canRedeem(owner));
375 uint256 proceeds = calculateProceeds(shares);
376 _burn(owner , shares);
377 zchf.transfer(target , proceeds);
378 emit Trade(owner , -int(shares), proceeds , price ());
379 return proceeds;
380 }
381
382 /**
383 * Calculate ZCHF received when depositing shares
384 * @param shares number of shares we want to exchange for ZCHF ,
385 * in dec18 format
386 * @return amount of ZCHF received for the shares
387 */
388 function calculateProceeds(uint256 shares) public view returns (uint256) {
389 uint256 totalShares = totalSupply ();
390 require(shares + ONE_DEC18 < totalShares , "too many shares "); // make sure there is always at least one share
391 uint256 capital = zchf.equity ();
392 uint256 reductionAfterFees = (shares * 997) / 1000;
393 uint256 newCapital = _mulD18(capital , _power3(_divD18(totalShares - reductionAfterFees , totalShares)));
394 return capital - newCapital;
395 }
396
397 /**
398 * If there is less than 1000 ZCHF in equity left (maybe even negative), the system is at risk
399 * and we should allow qualified FPS holders to restructure the system.
400 *
401 * Example: there was a devastating loss and equity stands at -1’000’000. Most shareholders have lost hope in the
402 * Frankencoin system except for a group of small FPS holders who still believes in it and is willing to provide
403 * 2’000’000 ZCHF to save it. These brave souls are essentially donating 1 ’000’000 to the minter reserve and it
404 * would be wrong to force them to share the other million with the passive FPS holders. Instead , they will get
405 * the possibility to bootstrap the system again owning 100% of all FPS shares.
406 *
407 * @param helpers A list of addresses that delegate to the caller in incremental order
408 * @param addressesToWipe A list of addresses whose FPS will be burned to zero
409 */
410 function restructureCapTable(address [] calldata helpers , address [] calldata addressesToWipe) external {
411 require(zchf.equity () < MINIMUM_EQUITY);
412 checkQualified(msg.sender , helpers);
413 for (uint256 i = 0; i < addressesToWipe.length; i++) {
414 address current = addressesToWipe[i];
415 _burn(current , balanceOf(current));
416 }
417 }
418 }
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2.F Minting Hub

The minting hub is a minter contract that serves as a basis to open collateralized po-
sitions with the Frankencoin’s unique collateralized, oracle-free minting mechanism.
The minting hub allows users to open new positions, to clone existing positions, to
launch challenges, and to bid on challenges.

1 pragma solidity ^0.8.0;
2
3 import "./ interface/IERC20.sol";
4 import "./ interface/IReserve.sol";
5 import "./ interface/IFrankencoin.sol";
6 import "./ interface/IPosition.sol";
7 import "./ interface/IPositionFactory.sol";
8
9 /**

10 * @title Minting Hub
11 * The central hub for creating , cloning and challenging collateralized Frankencoin positions.
12 * @dev Only one instance of this contract is required , whereas every new position comes with a new position
13 * contract. Pending challenges are stored as structs in an array.
14 */
15 contract MintingHub {
16 /**
17 * Irrevocable fee in ZCHF when proposing a new position (but not when cloning an existing one).
18 */
19 uint256 public constant OPENING_FEE = 1000 * 10 ** 18;
20
21 /**
22 * The challenger reward in parts per million (ppm) relative to the challenged amount , whereas
23 * challenged amount if defined as the challenged collateral amount times the liquidation price.
24 */
25 uint32 public constant CHALLENGER_REWARD = 20000; // 2%
26
27 IPositionFactory private immutable POSITION_FACTORY; // position contract to clone
28
29 IFrankencoin public immutable zchf; // currency
30 Challenge [] public challenges; // list of open challenges
31
32 /**
33 * Map to remember pending postponed collateral returns.
34 * @dev It maps collateral => beneficiary => amount.
35 */
36 mapping(address collateral => mapping(address owner => uint256 amount)) public pendingReturns;
37
38 struct Challenge {
39 address challenger; // the address from which the challenge was initiated
40 uint64 start; // the start of the challenge
41 IPosition position; // the position that was challenged
42 uint256 size; // how much collateral the challenger provided
43 }
44
45 event PositionOpened(
46 address indexed owner ,
47 address indexed position ,
48 address zchf ,
49 address collateral ,
50 uint256 price
51 );
52 event ChallengeStarted(address indexed challenger , address indexed position , uint256 size , uint256 number);
53 event ChallengeAverted(address indexed position , uint256 number , uint256 size);
54 event ChallengeSucceeded(
55 address indexed position ,
56 uint256 number ,
57 uint256 bid ,
58 uint256 acquiredCollateral ,
59 uint256 challengeSize
60 );
61 event PostPonedReturn(address collateral , address indexed beneficiary , uint256 amount);
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62
63 error UnexpectedPrice ();
64 error InvalidPos ();
65
66 modifier validPos(address position) {
67 if (zchf.getPositionParent(position) != address(this)) revert InvalidPos ();
68 _;
69 }
70
71 constructor(address _zchf , address _factory) {
72 zchf = IFrankencoin(_zchf);
73 POSITION_FACTORY = IPositionFactory(_factory);
74 }
75
76 function openPositionOneWeek(
77 address _collateralAddress ,
78 uint256 _minCollateral ,
79 uint256 _initialCollateral ,
80 uint256 _mintingMaximum ,
81 uint256 _expirationSeconds ,
82 uint64 _challengeSeconds ,
83 uint32 _annualInterestPPM ,
84 uint256 _liqPrice ,
85 uint32 _reservePPM
86 ) public returns (address) {
87 return
88 openPosition(
89 _collateralAddress ,
90 _minCollateral ,
91 _initialCollateral ,
92 _mintingMaximum ,
93 7 days ,
94 _expirationSeconds ,
95 _challengeSeconds ,
96 _annualInterestPPM ,
97 _liqPrice ,
98 _reservePPM
99 );

100 }
101
102 /**
103 * Open a collateralized loan position. See also https :// docs.frankencoin.com/positions/open .
104 * @dev For a successful call , you must set an allowance for the collateral token , allowing
105 * the minting hub to transfer the initial collateral amount to the newly created position and to
106 * withdraw the fees.
107 *
108 * @param _collateralAddress address of collateral token
109 * @param _minCollateral minimum collateral required to prevent dust amounts
110 * @param _initialCollateral amount of initial collateral to be deposited
111 * @param _mintingMaximum maximal amount of ZCHF that can be minted by the position owner
112 * @param _expirationSeconds position tenor in unit of timestamp (seconds) from ’now ’
113 * @param _challengeSeconds challenge period. Longer for less liquid collateral.
114 * @param _annualInterestPPM ppm of minted amount that is paid as fee for each year of duration
115 * @param _liqPrice Liquidation price with (36 - token decimals) decimals ,
116 * e.g. 18 decimals for an 18 dec collateral , 36 decs for a 0 dec collateral.
117 * @param _reservePPM ppm of minted amount that is locked as borrower ’s reserve , e.g. 20%
118 * @return address address of created position
119 */
120 function openPosition(
121 address _collateralAddress ,
122 uint256 _minCollateral ,
123 uint256 _initialCollateral ,
124 uint256 _mintingMaximum ,
125 uint256 _initPeriodSeconds ,
126 uint256 _expirationSeconds ,
127 uint64 _challengeSeconds ,
128 uint32 _annualInterestPPM ,
129 uint256 _liqPrice ,
130 uint32 _reservePPM
131 ) public returns (address) {
132 require(_annualInterestPPM <= 1000000);
133 require(_reservePPM <= 1000000);
134 require(IERC20(_collateralAddress).decimals () <= 24); // leaves 12 digits for price
135 require(_initialCollateral >= _minCollateral , "must start with min col");
136 require(_minCollateral * _liqPrice >= 5000 ether * 10 ** 18); // must start with at least 5000 ZCHF worth of collateral
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137 IPosition pos = IPosition(
138 POSITION_FACTORY.createNewPosition(
139 msg.sender ,
140 address(zchf),
141 _collateralAddress ,
142 _minCollateral ,
143 _mintingMaximum ,
144 _initPeriodSeconds ,
145 _expirationSeconds ,
146 _challengeSeconds ,
147 _annualInterestPPM ,
148 _liqPrice ,
149 _reservePPM
150 )
151 );
152 zchf.registerPosition(address(pos));
153 zchf.transferFrom(msg.sender , address(zchf.reserve ()), OPENING_FEE);
154 IERC20(_collateralAddress).transferFrom(msg.sender , address(pos), _initialCollateral);
155
156 emit PositionOpened(msg.sender , address(pos), address(zchf), _collateralAddress , _liqPrice);
157 return address(pos);
158 }
159
160 /**
161 * Clones an existing position and immediately tries to mint the specified amount using the given collateral.
162 * @dev This needs an allowance to be set on the collateral contract such that the minting hub can get the collateral.
163 */
164 function clonePosition(
165 address position ,
166 uint256 _initialCollateral ,
167 uint256 _initialMint ,
168 uint256 expiration
169 ) public validPos(position) returns (address) {
170 IPosition existing = IPosition(position);
171 require(expiration <= IPosition(existing.original ()).expiration ());
172 existing.reduceLimitForClone(_initialMint);
173 address pos = POSITION_FACTORY.clonePosition(position);
174 zchf.registerPosition(pos);
175 IPosition(pos).initializeClone(msg.sender , existing.price(), _initialCollateral , _initialMint , expiration);
176 existing.collateral ().transferFrom(msg.sender , pos , _initialCollateral);
177
178 emit PositionOpened(
179 msg.sender ,
180 address(pos),
181 address(zchf),
182 address(IPosition(pos).collateral ()),
183 IPosition(pos).price()
184 );
185 return address(pos);
186 }
187
188 /**
189 * Launch a challenge (Dutch auction) on a position
190 * @param _positionAddr address of the position we want to challenge
191 * @param _collateralAmount size of the collateral we want to challenge (dec 18)
192 * @param expectedPrice position.price() to guard against the minter fruntrunning with a price change
193 * @return index of the challenge in challenge -array
194 */
195 function launchChallenge(
196 address _positionAddr ,
197 uint256 _collateralAmount ,
198 uint256 expectedPrice
199 ) external validPos(_positionAddr) returns (uint256) {
200 IPosition position = IPosition(_positionAddr);
201 if (position.price () != expectedPrice) revert UnexpectedPrice ();
202 IERC20(position.collateral ()).transferFrom(msg.sender , address(this), _collateralAmount);
203 uint256 pos = challenges.length;
204 challenges.push(Challenge(msg.sender , uint64(block.timestamp), position , _collateralAmount));
205 position.notifyChallengeStarted(_collateralAmount);
206 emit ChallengeStarted(msg.sender , address(position), _collateralAmount , pos);
207 return pos;
208 }
209
210 /**
211 * Post a bid in ZCHF given an open challenge.
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212 *
213 * @dev In case that the collateral cannot be transfered back to the challenger (i.e. because the collateral token
214 * has a blacklist and the challenger is on it), it is possible to postpone the return of the collateral.
215 *
216 * @param _challengeNumber index of the challenge as broadcast in the event
217 * @param size how much of the collateral the caller wants to bid for at most
218 * (automatically reduced to the available amount)
219 * @param postponeCollateralReturn To postpone the return of the collateral to the challenger. Usually false.
220 */
221 function bid(uint32 _challengeNumber , uint256 size , bool postponeCollateralReturn) external {
222 Challenge memory challenge = challenges[_challengeNumber ];
223 (uint256 liqPrice , uint64 phase1 , uint64 phase2) = challenge.position.challengeData ();
224 size = challenge.size < size ? challenge.size : size; // cannot bid for more than the size of the challenge
225
226 if (block.timestamp <= challenge.start + phase1) {
227 _avertChallenge(challenge , _challengeNumber , liqPrice , size);
228 emit ChallengeAverted(address(challenge.position), _challengeNumber , size);
229 } else {
230 _returnChallengerCollateral(challenge , _challengeNumber , size , postponeCollateralReturn);
231 (uint256 transferredCollateral , uint256 offer) = _finishChallenge(
232 challenge ,
233 liqPrice ,
234 phase1 ,
235 phase2 ,
236 size
237 );
238 emit ChallengeSucceeded(address(challenge.position), _challengeNumber , offer , transferredCollateral , size);
239 }
240 }
241
242 function _finishChallenge(
243 Challenge memory challenge ,
244 uint256 liqPrice ,
245 uint64 phase1 ,
246 uint64 phase2 ,
247 uint256 size
248 ) internal returns (uint256 , uint256) {
249 // Repayments depend on what was actually minted , whereas bids depend on the available collateral
250 (address owner , uint256 collateral , uint256 repayment , uint32 reservePPM) = challenge
251 .position
252 .notifyChallengeSucceeded(msg.sender , size);
253
254 // No overflow possible thanks to invariant (col * price <= limit * 10**18)
255 // enforced in Position.setPrice and knowing that collateral <= col.
256 uint256 offer = (_calculatePrice(challenge.start + phase1 , phase2 , liqPrice) * collateral) / 10 ** 18;
257 zchf.transferFrom(msg.sender , address(this), offer); // get money from bidder
258 uint256 reward = (offer * CHALLENGER_REWARD) / 1000 _000;
259 uint256 fundsNeeded = reward + repayment;
260
261 if (offer > fundsNeeded) {
262 zchf.transfer(owner , offer - fundsNeeded);
263 } else if (offer < fundsNeeded) {
264 zchf.notifyLoss(fundsNeeded - offer); // ensure we have enough to pay everything
265 }
266 zchf.transfer(challenge.challenger , reward); // pay out the challenger reward
267 zchf.burnWithoutReserve(repayment , reservePPM); // Repay the challenged part
268 return (collateral , offer);
269 }
270
271 function _avertChallenge(Challenge memory challenge , uint32 number , uint256 liqPrice , uint256 size) internal {
272 if (msg.sender == challenge.challenger) {
273 // allow challenger to cancel challenge without paying themselves
274 } else {
275 zchf.transferFrom(msg.sender , challenge.challenger , (size * liqPrice) / (10 ** 18));
276 }
277
278 challenge.position.notifyChallengeAverted(size);
279 challenge.position.collateral ().transfer(msg.sender , size);
280 if (size < challenge.size) {
281 challenges[number ].size = challenge.size - size;
282 } else {
283 require(size == challenge.size);
284 delete challenges[number ];
285 }
286 }
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287
288 /**
289 * Returns ’amount ’ of the collateral to the challenger and reduces or deletes the relevant challenge.
290 */
291 function _returnChallengerCollateral(
292 Challenge memory challenge ,
293 uint32 number ,
294 uint256 amount ,
295 bool postpone
296 ) internal {
297 _returnCollateral(challenge.position.collateral (), challenge.challenger , amount , postpone);
298 if (challenge.size == amount) {
299 // bid on full amount
300 delete challenges[number ];
301 } else {
302 // bid on partial amount
303 challenges[number ].size -= amount;
304 }
305 }
306
307 /**
308 * Calculates the current Dutch auction price.
309 * @dev Starts at the full price at time ’start ’ and linearly goes to 0 as ’phase2 ’ passes.
310 */
311 function _calculatePrice(uint64 start , uint64 phase2 , uint256 liqPrice) internal view returns (uint256) {
312 uint64 timeNow = uint64(block.timestamp);
313 if (timeNow <= start) {
314 return liqPrice;
315 } else if (timeNow >= start + phase2) {
316 return 0;
317 } else {
318 uint256 timeLeft = phase2 - (timeNow - start);
319 return (liqPrice / phase2) * timeLeft;
320 }
321 }
322
323 /**
324 * Get the price per unit of the collateral for the given challenge.
325 * @dev The price comes with (36- collateral.decimals ()) digits , such that multiplying it with the
326 * raw collateral amount always yields a price with 36 digits , or 18 digits after dividing by 10**18 again.
327 */
328 function price(uint32 challengeNumber) public view returns (uint256) {
329 Challenge memory challenge = challenges[challengeNumber ];
330 if (challenge.challenger == address (0x0)) {
331 return 0;
332 } else {
333 (uint256 liqPrice , uint64 phase1 , uint64 phase2) = challenge.position.challengeData ();
334 return _calculatePrice(challenge.start + phase1 , phase2 , liqPrice);
335 }
336 }
337
338 /**
339 * Challengers can call this method to withdraw collateral whose return was postponed.
340 */
341 function returnPostponedCollateral(address collateral , address target) external {
342 uint256 amount = pendingReturns[collateral ][msg.sender ];
343 delete pendingReturns[collateral ][msg.sender ];
344 IERC20(collateral).transfer(target , amount);
345 }
346
347 function _returnCollateral(IERC20 collateral , address recipient , uint256 amount , bool postpone) internal {
348 if (postpone) {
349 // Postponing helps in case the challenger was blacklisted or otherwise cannot receive at the moment.
350 pendingReturns[address(collateral)][ recipient] += amount;
351 emit PostPonedReturn(address(collateral), recipient , amount);
352 } else {
353 collateral.transfer(recipient , amount); // return the challenger ’s collateral
354 }
355 }
356 }
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2.G Position Factory

The position factory is a helper contract to create and clone positions.

1 pragma solidity ^0.8.0;
2
3 import "./ Position.sol";
4 import "./ interface/IFrankencoin.sol";
5
6 contract PositionFactory {
7 /**
8 * Create a completely new position in a newly deployed contract.
9 * Must be called through minting hub to be recognized as valid position.

10 */
11 function createNewPosition(
12 address _owner ,
13 address _zchf ,
14 address _collateral ,
15 uint256 _minCollateral ,
16 uint256 _initialLimit ,
17 uint256 _initPeriod ,
18 uint256 _duration ,
19 uint64 _challengePeriod ,
20 uint32 _annualInterestPPM ,
21 uint256 _liqPrice ,
22 uint32 _reserve
23 ) external returns (address) {
24 return
25 address(
26 new Position(
27 _owner ,
28 msg.sender ,
29 _zchf ,
30 _collateral ,
31 _minCollateral ,
32 _initialLimit ,
33 _initPeriod ,
34 _duration ,
35 _challengePeriod ,
36 _annualInterestPPM ,
37 _liqPrice ,
38 _reserve
39 )
40 );
41 }
42
43 /**
44 * clone an existing position. This can be a clone of another clone ,
45 * or an original position.
46 * @param _existing address of the position we want to clone
47 * @return address of the newly created clone position
48 */
49 function clonePosition(address _existing) external returns (address) {
50 Position existing = Position(_existing);
51 Position clone = Position(_createClone(existing.original ()));
52 return address(clone);
53 }
54
55 // github.com/optionality/clone -factory/blob /32782 f82dfc5a00d103a7e61a17a5dedbd1e8e9d/contracts/CloneFactory.sol
56 function _createClone(address target) internal returns (address result) {
57 bytes20 targetBytes = bytes20(target);
58 assembly {
59 let clone := mload(0x40)
60 mstore(clone , 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
61 mstore(add(clone , 0x14), targetBytes)
62 mstore(add(clone , 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
63 result := create(0, clone , 0x37)
64 }
65 require(result != address (0), "ERC1167: create failed ");
66 }
67 }
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2.H Collateralized Position

This smart contract represents a collateralized position. There is a separate instance
of this contract for each position and each instance belongs to an owner. The owner
is the person that created (or cloned) the position and also considered the owner of
the provided collateral.

1 pragma solidity ^0.8.0;
2
3 import "./ utils/Ownable.sol";
4 import "./ utils/MathUtil.sol";
5
6 import "./ interface/IERC20.sol";
7 import "./ interface/IPosition.sol";
8 import "./ interface/IReserve.sol";
9 import "./ interface/IFrankencoin.sol";

10
11 /**
12 * @title Position
13 * A collateralized minting position.
14 */
15 contract Position is Ownable , IPosition , MathUtil {
16 /**
17 * Note that this contract is intended to be cloned. All clones will share the same values for
18 * the constant and immutable fields , but have their own values for the other fields.
19 */
20
21 /**
22 * The zchf price per unit of the collateral below which challenges succeed , (36 - collateral.decimals) decimals
23 */
24 uint256 public price;
25
26 /**
27 * Net minted amount , including reserve.
28 */
29 uint256 public minted;
30
31 /**
32 * Amount of the collateral that is currently under a challenge.
33 * Used to figure out whether there are pending challenges.
34 */
35 uint256 public challengedAmount;
36
37 /**
38 * Challenge period in seconds.
39 */
40 uint64 public immutable challengePeriod;
41
42 /**
43 * End of the latest cooldown. If this is in the future , minting is suspended.
44 */
45 uint256 public cooldown;
46
47 /**
48 * How much can be minted at most.
49 */
50 uint256 public limit;
51
52 /**
53 * Timestamp when minting can start and the position no longer denied.
54 */
55 uint256 public immutable start;
56
57 /**
58 * Timestamp of the expiration of the position. After expiration , challenges cannot be averted
59 * any more. This is also the basis for fee calculations.
60 */
61 uint256 public expiration;
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62
63 /**
64 * The original position to help identifying clones.
65 */
66 address public immutable original;
67
68 /**
69 * Pointer to the minting hub.
70 */
71 address public immutable hub;
72
73 /**
74 * The Frankencoin contract.
75 */
76 IFrankencoin public immutable zchf;
77
78 /**
79 * The collateral token.
80 */
81 IERC20 public immutable override collateral;
82
83 /**
84 * Minimum acceptable collateral amount to prevent dust.
85 */
86 uint256 public immutable override minimumCollateral;
87
88 /**
89 * Always pay interest for at least four weeks.
90 */
91 uint256 private constant MIN_INTEREST_DURATION = 4 weeks;
92
93 /**
94 * The interest in parts per million per year that is deducted when minting Frankencoins.
95 * To be paid upfront.
96 */
97 uint32 public immutable annualInterestPPM;
98
99 /**

100 * The reserve contribution in parts per million of the minted amount.
101 */
102 uint32 public immutable reserveContribution;
103
104 event MintingUpdate(uint256 collateral , uint256 price , uint256 minted , uint256 limit);
105 event PositionDenied(address indexed sender , string message); // emitted if closed by governance
106
107 error InsufficientCollateral ();
108 error TooLate ();
109 error RepaidTooMuch(uint256 excess);
110 error LimitExceeded ();
111 error ChallengeTooSmall ();
112 error Expired ();
113 error Hot();
114 error Challenged ();
115 error NotHub ();
116
117 modifier alive() {
118 if (block.timestamp >= expiration) revert Expired ();
119 _;
120 }
121
122 modifier noCooldown () {
123 if (block.timestamp <= cooldown) revert Hot();
124 _;
125 }
126
127 modifier noChallenge () {
128 if (challengedAmount > 0) revert Challenged ();
129 _;
130 }
131
132 modifier onlyHub () {
133 if (msg.sender != address(hub)) revert NotHub ();
134 _;
135 }
136
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137 /**
138 * @dev See MintingHub.openPosition
139 */
140 constructor(
141 address _owner ,
142 address _hub ,
143 address _zchf ,
144 address _collateral ,
145 uint256 _minCollateral ,
146 uint256 _initialLimit ,
147 uint256 _initPeriod ,
148 uint256 _duration ,
149 uint64 _challengePeriod ,
150 uint32 _annualInterestPPM ,
151 uint256 _liqPrice ,
152 uint32 _reservePPM
153 ) {
154 require(_initPeriod >= 3 days); // must be at least three days , recommended to use higher values
155 _setOwner(_owner);
156 original = address(this);
157 hub = _hub;
158 zchf = IFrankencoin(_zchf);
159 collateral = IERC20(_collateral);
160 annualInterestPPM = _annualInterestPPM;
161 reserveContribution = _reservePPM;
162 minimumCollateral = _minCollateral;
163 challengePeriod = _challengePeriod;
164 start = block.timestamp + _initPeriod; // at least three days time to deny the position
165 cooldown = start;
166 expiration = start + _duration;
167 limit = _initialLimit;
168 _setPrice(_liqPrice);
169 }
170
171 /**
172 * Method to initialize a freshly created clone. It is the responsibility of the creator to make sure this is only
173 * called once and to call reduceLimitForClone on the original position before initializing the clone.
174 */
175 function initializeClone(
176 address owner ,
177 uint256 _price ,
178 uint256 _coll ,
179 uint256 _initialMint ,
180 uint256 expirationTime
181 ) external onlyHub {
182 if (_coll < minimumCollateral) revert InsufficientCollateral ();
183 uint256 impliedPrice = (_initialMint * ONE_DEC18) / _coll;
184 _initialMint = (impliedPrice * _coll) / ONE_DEC18; // to cancel potential rounding errors
185 if (impliedPrice > _price) revert InsufficientCollateral ();
186 _setOwner(owner);
187 limit = _initialMint;
188 expiration = expirationTime;
189 _setPrice(impliedPrice);
190 _mint(owner , _initialMint , _coll);
191 }
192
193 function limitForClones () public view returns (uint256) {
194 uint256 backedLimit = (_collateralBalance () * price) / ONE_DEC18;
195 if (backedLimit >= limit) {
196 return 0;
197 } else {
198 // due to invariants , this is always below (limit - minted)
199 return limit - backedLimit;
200 }
201 }
202
203 /**
204 * Adjust this position ’s limit to allow a clone to mint its own Frankencoins.
205 * Invariant: global limit stays the same.
206 *
207 * Cloning a position is only allowed if the position is not challenged , not expired and not in cooldown.
208 */
209 function reduceLimitForClone(uint256 mint_) external noChallenge noCooldown alive onlyHub {
210 if (mint_ > limitForClones ()) revert LimitExceeded ();
211 limit -= mint_;
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212 }
213
214 /**
215 * Qualified pool share holders can call this method to immediately expire a freshly proposed position.
216 */
217 function deny(address [] calldata helpers , string calldata message) external {
218 if (block.timestamp >= start) revert TooLate ();
219 IReserve(zchf.reserve ()).checkQualified(msg.sender , helpers);
220 _close (); // since expiration is immutable , we put it under eternal cooldown
221 emit PositionDenied(msg.sender , message);
222 }
223
224 function _close () internal {
225 cooldown = type(uint256).max;
226 }
227
228 function isClosed () public view returns (bool) {
229 return cooldown == type(uint256).max;
230 }
231
232 /**
233 * This is how much the minter can actually use when minting ZCHF , with the rest being used
234 * assigned to the minter reserve or (if applicable) fees.
235 */
236 function getUsableMint(uint256 totalMint , bool afterFees) external view returns (uint256) {
237 if (afterFees) {
238 return (totalMint * (1000 _000 - reserveContribution - calculateCurrentFee ())) / 1000 _000;
239 } else {
240 return (totalMint * (1000 _000 - reserveContribution)) / 1000 _000;
241 }
242 }
243
244 /**
245 * "All in one" function to adjust the outstanding amount of ZCHF , the collateral amount ,
246 * and the price in one transaction.
247 */
248 function adjust(uint256 newMinted , uint256 newCollateral , uint256 newPrice) external onlyOwner {
249 uint256 colbal = _collateralBalance ();
250 if (newCollateral > colbal) {
251 collateral.transferFrom(msg.sender , address(this), newCollateral - colbal);
252 }
253 // Must be called after collateral deposit , but before withdrawal
254 if (newMinted < minted) {
255 zchf.burnFromWithReserve(msg.sender , minted - newMinted , reserveContribution);
256 minted = newMinted;
257 }
258 if (newCollateral < colbal) {
259 withdrawCollateral(msg.sender , colbal - newCollateral);
260 }
261 // Must be called after collateral withdrawal
262 if (newMinted > minted) {
263 mint(msg.sender , newMinted - minted);
264 }
265 if (newPrice != price) {
266 adjustPrice(newPrice);
267 }
268 }
269
270 /**
271 * Allows the position owner to adjust the liquidation price as long as there is no pending challenge.
272 * Lowering the liquidation price can be done with immediate effect , given that there is enough collateral.
273 * Increasing the liquidation price triggers a cooldown period of 3 days , during which minting is suspended.
274 */
275 function adjustPrice(uint256 newPrice) public onlyOwner noChallenge {
276 if (newPrice > price) {
277 _restrictMinting (3 days);
278 } else {
279 _checkCollateral(_collateralBalance (), newPrice);
280 }
281 _setPrice(newPrice);
282 emit MintingUpdate(_collateralBalance (), price , minted , limit);
283 }
284
285 function _setPrice(uint256 newPrice) internal {
286 require(newPrice * minimumCollateral <= limit * ONE_DEC18); // sanity check
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287 price = newPrice;
288 }
289
290 function _collateralBalance () internal view returns (uint256) {
291 return IERC20(collateral).balanceOf(address(this));
292 }
293
294 /**
295 * Mint ZCHF as long as there is no open challenge , the position is not subject to a cooldown ,
296 * and there is sufficient collateral.
297 */
298 function mint(address target , uint256 amount) public onlyOwner noChallenge noCooldown alive {
299 _mint(target , amount , _collateralBalance ());
300 }
301
302 function calculateCurrentFee () public view returns (uint32) {
303 uint256 exp = expiration;
304 uint256 time = block.timestamp < start ? start : block.timestamp;
305 uint256 timePassed = time >= exp - MIN_INTEREST_DURATION ? MIN_INTEREST_DURATION : exp - time;
306 // Time resolution is in the range of minutes for typical interest rates.
307 return uint32 (( timePassed * annualInterestPPM) / 365 days);
308 }
309
310 function _mint(address target , uint256 amount , uint256 collateral_) internal {
311 if (minted + amount > limit) revert LimitExceeded ();
312 zchf.mintWithReserve(target , amount , reserveContribution , calculateCurrentFee ());
313 minted += amount;
314
315 _checkCollateral(collateral_ , price);
316 emit MintingUpdate(_collateralBalance (), price , minted , limit);
317 }
318
319 function _restrictMinting(uint256 period) internal {
320 uint256 horizon = block.timestamp + period;
321 if (horizon > cooldown) {
322 cooldown = horizon;
323 }
324 }
325
326 /**
327 * Repay some ZCHF. If too much is repaid , the call fails.
328 * It is possible to repay while there are challenges , but the collateral is locked until all is clear again.
329 *
330 * The repaid amount should fulfill the following equation in order to close the position ,
331 * i.e. bring the minted amount to 0:
332 * minted = amount + zchf.calculateAssignedReserve(amount , reservePPM)
333 *
334 * Under normal circumstances , this implies:
335 * amount = minted * (1000000 - reservePPM)
336 *
337 * E.g. if minted is 50 and reservePPM is 200000 , it is necessary to repay 40 to be able to close the position.
338 */
339 function repay(uint256 amount) public {
340 IERC20(zchf).transferFrom(msg.sender , address(this), amount);
341 uint256 actuallyRepaid = IFrankencoin(zchf).burnWithReserve(amount , reserveContribution);
342 _notifyRepaid(actuallyRepaid);
343 emit MintingUpdate(_collateralBalance (), price , minted , limit);
344 }
345
346 function _notifyRepaid(uint256 amount) internal {
347 if (amount > minted) revert RepaidTooMuch(amount - minted);
348 minted -= amount;
349 }
350
351 /**
352 * Withdraw any ERC20 token that might have ended up on this address.
353 * Withdrawing collateral is subject to the same restrictions as withdrawCollateral (...).
354 */
355 function withdraw(address token , address target , uint256 amount) external onlyOwner {
356 if (token == address(collateral)) {
357 withdrawCollateral(target , amount);
358 } else {
359 uint256 balance = _collateralBalance ();
360 IERC20(token).transfer(target , amount);
361 require(balance == _collateralBalance ()); // guard against double -entry -point tokens
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362 }
363 }
364
365 /**
366 * Withdraw collateral from the position up to the extent that it is still well collateralized afterwards.
367 * Not possible as long as there is an open challenge or the contract is subject to a cooldown.
368 *
369 * Withdrawing collateral below the minimum collateral amount formally closes the position.
370 */
371 function withdrawCollateral(address target , uint256 amount) public onlyOwner noChallenge {
372 if (block.timestamp <= cooldown && !isClosed ()) revert Hot();
373 uint256 balance = _withdrawCollateral(target , amount);
374 _checkCollateral(balance , price);
375 if (balance < minimumCollateral && balance > 0) revert InsufficientCollateral (); // Prevent dust amounts
376 }
377
378 function _withdrawCollateral(address target , uint256 amount) internal returns (uint256) {
379 if (amount > 0) {
380 // Some weird tokens fail when trying to transfer 0 amounts
381 IERC20(collateral).transfer(target , amount);
382 }
383 uint256 balance = _collateralBalance ();
384 if (balance < minimumCollateral && challengedAmount == 0) {
385 // This leaves a slightly unsatisfying possibility open: if the withdrawal happens due to a successful
386 // challenge , there might be a small amount of collateral left that is not withheld in case there are no
387 // other pending challenges. The only way to cleanly solve this would be to have two distinct cooldowns ,
388 // one for minting and one for withdrawals.
389 _close ();
390 }
391
392 emit MintingUpdate(balance , price , minted , limit);
393 return balance;
394 }
395
396 /**
397 * This invariant must always hold and must always be checked when any of the three
398 * variables change in an adverse way.
399 */
400 function _checkCollateral(uint256 collateralReserve , uint256 atPrice) internal view {
401 if (collateralReserve * atPrice < minted * ONE_DEC18) revert InsufficientCollateral ();
402 }
403
404 /**
405 * Returns the liquidation price and the durations for phase1 and phase2 of the challenge.
406 * In this implementation , both phases are always of equal length.
407 */
408 function challengeData () external view returns (uint256 liqPrice , uint64 phase1 , uint64 phase2) {
409 return (price , challengePeriod , challengePeriod);
410 }
411
412 function notifyChallengeStarted(uint256 size) external onlyHub {
413 // Require minimum size. Collateral balance can be below minimum if it was partially challenged before.
414 if (size < minimumCollateral && size < _collateralBalance ()) revert ChallengeTooSmall ();
415 if (size == 0) revert ChallengeTooSmall ();
416 challengedAmount += size;
417 }
418
419 /**
420 * @param size amount of collateral challenged (dec18)
421 */
422 function notifyChallengeAverted(uint256 size) external onlyHub {
423 challengedAmount -= size;
424 // Don ’t allow minter to close the position immediately so challenge can be repeated before
425 // the owner has a chance to mint more on an undercollateralized position
426 _restrictMinting (1 days);
427 }
428
429 /**
430 * Notifies the position that a challenge was successful.
431 * Triggers the payout of the challenged part of the collateral.
432 * Everything else is assumed to be handled by the hub.
433 *
434 * @param _bidder address of the bidder that receives the collateral
435 * @param _size size of the collateral bid for (dec 18)
436 * @return (position owner , effective challenge size in ZCHF , repaid amount , reserve ppm)
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437 */
438 function notifyChallengeSucceeded(
439 address _bidder ,
440 uint256 _size
441 ) external onlyHub returns (address , uint256 , uint256 , uint32) {
442 challengedAmount -= _size;
443 uint256 colBal = _collateralBalance ();
444 if (colBal < _size) {
445 _size = colBal;
446 }
447 uint256 repayment = _mulDiv(minted , _size , colBal);
448 _notifyRepaid(repayment); // we assume the caller takes care of the actual repayment
449 _withdrawCollateral(_bidder , _size); // transfer collateral to the bidder and emit update
450
451 // Give time for additional challenges before the owner can mint again. In particular ,
452 // the owner might have added collateral only seconds before the challenge ended , preventing a close.
453 _restrictMinting (3 days);
454
455 return (owner , _size , repayment , reserveContribution);
456 }
457 }

2.I Math Utilities

A contract with some basic mathematical utilities. Most notable is a function to cal-
culate the cubic root using Halley’s approximation method as Solidity only supports
integer exponents natively.

1 pragma solidity ^0.8.0;
2
3 /**
4 * @title Functions for share valuation
5 */
6 contract MathUtil {
7 uint256 internal constant ONE_DEC18 = 10 ** 18;
8
9 // Let ’s go for 12 digits of precision (18-6)

10 uint256 internal constant THRESH_DEC18 = 10 ** 6;
11
12 /**
13 * Cubic root with Halley approximation
14 * Number 1e18 decimal
15 * @param _v number for which we calculate x**(1/3)
16 * @return returns _v **(1/3)
17 */
18 function _cubicRoot(uint256 _v) internal pure returns (uint256) {
19 // Good first guess for _v slightly above 1.0, which is often the case in the Frankencoin system
20 uint256 x = _v > ONE_DEC18 && _v < 10 ** 19 ? (_v - ONE_DEC18) / 3 + ONE_DEC18 : ONE_DEC18;
21 uint256 diff;
22 do {
23 uint256 powX3 = _mulD18(_mulD18(x, x), x);
24 uint256 xnew = _mulDiv(x, (powX3 + 2 * _v), (2 * powX3 + _v));
25 diff = xnew > x ? xnew - x : x - xnew;
26 x = xnew;
27 } while (diff > THRESH_DEC18);
28 return x;
29 }
30
31 /**
32 * Divides and multiplies , with divisor > 0.
33 */
34 function _mulDiv(uint256 x, uint256 factor , uint256 divisor) internal pure returns (uint256) {
35 if (factor == 0) {
36 return 0;
37 } else if (type(uint256).max / factor > x) {
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38 return (x * factor) / divisor;
39 } else {
40 // divide first to avoid overflow
41 return x > factor ? (x / divisor) * factor : (factor / divisor) * x;
42 }
43 }
44
45 function _mulD18(uint256 _a , uint256 _b) internal pure returns (uint256) {
46 return (_a * _b) / ONE_DEC18;
47 }
48
49 function _divD18(uint256 _a , uint256 _b) internal pure returns (uint256) {
50 return (_a * ONE_DEC18) / _b;
51 }
52
53 function _power3(uint256 _x) internal pure returns (uint256) {
54 return _mulD18(_mulD18(_x, _x), _x);
55 }
56
57 function _min(uint256 a, uint256 b) internal pure returns (uint256) {
58 return a < b ? a : b;
59 }
60 }

2.J Stablecoin Bridge

A minter contract that allows the minting of Frankencoins using a trusted stablecoin
with the same reference currency. Separate instances of bridges are required to
support multiple bridged coins or to mint beyond the specified limit.

1 \begin{spacing }{0.5}
2 pragma solidity ^0.8.0;
3
4 import "./ interface/IERC20.sol";
5 import "./ interface/IERC677Receiver.sol";
6 import "./ interface/IFrankencoin.sol";
7
8 /**
9 * @title Stable Coin Bridge

10 * A minting contract for another Swiss franc stablecoin (’source stablecoin ’) that we trust.
11 * @author Frankencoin
12 */
13 contract StablecoinBridge {
14 IERC20 public immutable chf; // the source stablecoin
15 IFrankencoin public immutable zchf; // the Frankencoin
16
17 /**
18 * The time horizon after which this bridge expires and needs to be replaced by a new contract.
19 */
20 uint256 public immutable horizon;
21
22 /**
23 * The maximum amount of outstanding converted source stablecoins.
24 */
25 uint256 public immutable limit;
26 uint256 public minted;
27
28 error Limit(uint256 amount , uint256 limit);
29 error Expired(uint256 time , uint256 expiration);
30 error UnsupportedToken(address token);
31
32 constructor(address other , address zchfAddress , uint256 limit_) {
33 chf = IERC20(other);
34 zchf = IFrankencoin(zchfAddress);
35 horizon = block.timestamp + 52 weeks;
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36 limit = limit_;
37 minted = 0;
38 }
39
40 /**
41 * Convenience method for mint(msg.sender , amount)
42 */
43 function mint(uint256 amount) external {
44 mintTo(msg.sender , amount);
45 }
46
47 /**
48 * Mint the target amount of Frankencoins , taking the equal amount of source coins from the sender.
49 * @dev This only works if an allowance for the source coins has been set and the caller has enough of them.
50 */
51 function mintTo(address target , uint256 amount) public {
52 chf.transferFrom(msg.sender , address(this), amount);
53 _mint(target , amount);
54 }
55
56 function _mint(address target , uint256 amount) internal {
57 if (block.timestamp > horizon) revert Expired(block.timestamp , horizon);
58 zchf.mint(target , amount);
59 minted += amount;
60 if (minted > limit) revert Limit(amount , limit);
61 }
62
63 /**
64 * Convenience method for burnAndSend(msg.sender , amount)
65 */
66 function burn(uint256 amount) external {
67 _burn(msg.sender , msg.sender , amount);
68 }
69
70 /**
71 * Burn the indicated amount of Frankencoin and send the same number of source coin to the caller.
72 */
73 function burnAndSend(address target , uint256 amount) external {
74 _burn(msg.sender , target , amount);
75 }
76
77 function _burn(address zchfHolder , address target , uint256 amount) internal {
78 zchf.burnFrom(zchfHolder , amount);
79 chf.transfer(target , amount);
80 minted -= amount;
81 }
82 }
83 \end{spacing}
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